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1. Introduction 

The problem of crack initiation and propagation in the brittle materials, considering its 
practical significance, has been analysed by many researchers for the last two decades. Both, 
analytical and numerical method, e.g. Finite Elements Method (FEM) and Boundary Element 
Method, were used to solve this problem.  

In the FEM approach, the mesh shape and density are very significant to convergence of 
calculated results with observed test results. In the advanced FEM analysis the “remeshing” 
technique and prediction of the crack propagation direction are used. This technique was used in our 
earlier work [2,3] but it provides some complications in FEM solving procedures.  

In some special kind of problems, like tension test or rock cut test, another, simple procedure 
can be used to calculate path of the crack and forces causing material failure. This procedure is 
called “dead elements” in some FEM implementations and consist in removing (one or more) 
elements or changing element stiffness after checking the failure criterion for each element. 

The shortcoming of this procedure is necessity to use more dense element mesh than in the 
“remeshing” procedures. 

In presented paper “dead elements” procedure is used to analyse influence of the failure 
criterion on shape and direction of the crack and critical forces causing crack propagation. 

 
 
2. Limit state conditions 

The three failure criteria (Fig. 1) had been considered to analysis:  
§ author’s (PJ) criterion, proposed in 1986 [1], which limit state depends on three tensor 

invariants (I1, J2, J3)  
§ well known Drucker-Prager criterion, (I1, J2) 
§ classical Huber-Mises criterion (J2 ) 
 
Limit curves described by eqs. (1), (2), (3) in biaxial stress state are shown in Fig. 1. Fig. 2 

shows “tension meridian” and “compression meridian” of the PJ and Drucker-Prager limit surface 
in τ0 – σ0 plane and Fig. 3 shows isometric view of this surfaces. 

 
 

2.1 PJ criterion 
The PJ criterion was proposed by  the author in 1986 [1] in the form: 
 

( ) 02
020100 =++− ττσ CJPCC ,   (1)  

 
where:   
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( ) ( )( )βα −= JJP arccoscos 3
1  - function describing the shape of limit surface in 

deviatoric plane, 

13
1

0 I=σ    - mean stress, 

23
2

0 J=τ   - octahedral shear stress, 

1I     - first invariant of the stress tensor, 

32 , JJ     - second and third invariant of the stress deviator, 

2/3
2

3

2
33

J
JJ =   - alternative invariant of the stress deviator, 

210 ,,,, CCCβα   - material constants. 
 
Classical failure criteria, like Huber-Mises, Tresca, Drucker-Prager, Coulomb-Mohr as well as 

some new ones proposed by Lade, Matsuoka Ottosen, are particular cases [cf. 1,2] of the general 
form (1) PJ criterion. 

Material constants can be evaluated on the basis of some simple material test results like: 
§ fc  - failure stress in uniaxial compression, 
§  ft  - failure stress in uniaxial tension, 
§ fcc  - failure stress in biaxial compression at σ1/σ2 = 1, 
§ f0c  - failure stress in biaxial compression at σ1/σ2 = 2, 
§ fv  - failure stress in triaxial tension at σ1/σ2/σ3 = 1/1/1, 
 

For concrete or rock-like materials some simplifications can be taken on the basis of test 
results in biaxial stress state and R. M. Haythornthwaite “tension cutoff” hypotesis: 

 
fcc=1.1 fc ,    f0c=1.25 fc ,    fv= ft. 

 
2.2 Drucker – Prager criterion 

With notation used in eq. (1) well-known Drucker–Prager criterion can be written: 
 
    00100 =+− τσ CC .    (2)  
 
Two material constants C0 and C1 can be evaluated on the basis of uniaxial test results like 

ft  and  fc . 
 

2.3 Huber – Mises criterion 
Classical criterion proposed by T. Huber and  R. von Mises can be obtained by simplification 

of the general form (1): 
 
    000 =− Cτ .      (3)  
 
Material constant  C0 , in this analysis,  is evaluated with uniaxial tension failure stress ft. 
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Fig. 1. Limit curves in biaxial state of stress 
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Fig. 2. PJ and Drucker-Prager limit surface cross section by τ0 – σ0 plane. 



 
 

Fig. 3. PJ and Drucker-Prager limit surface – isometric view. 
 

3. Finite element models and analysis method 
The geometric parameters of the two models, which were analysed, are shown on Fig. 4 and 

Fig. 5. Model “A” modelled the test with tension stress domination and model “B” modelled rock 
cutting process in which compression stress is dominating. 

Boundary conditions for model “A”:  
§ z = -1  → uz=0, σzy=0,    
§ y = 0  → uy=0, σyz=0,   
§ y = 1  → σy=p. σyz=0, 
§ y=-2 → σy=0, σyz=0. 
 

Boundary conditions for model “B”:  
§ z=-1  → uz=0,  σzy=0,  
§ y=-2 →  uy=0,  uz=0, 
§ y=0  → σy=-p,  σyz=0, 
§ y=1  → σy=0,  σyz=0. 

 
Material constants for concrete or rock-like material were taken as follows:  
§ strength in uniaxial compression fc=20MPa,  
§ strength in biaxial compression  fcc=22MPa, f0c=25MPa, 
§ strength in uniaxial tension ft=2MPa.  
§ Young modulus:  E=32.4GPa,  Poisson ratio:  v=0,167.  

 



Following step-by-step procedure for crack propagation has been executed during finite 
element analysis: 

1. stress calculation for initial value of the force P, 
2. search for the element with maximal value of critical stress correspond to considered 

failure criterion, 
3. evaluation of the P=Pcr force for which the element with maximum stress is in the 

critical state according to failure criterion, 
4. removing the chosen element from the analysed FEM mesh or changing its stiffness, 
5. start next step of crack propagation process. 

 
 
 

 
 

Fig. 4. Geometric parameters of the model “A”. Mesh with 2079 nodes. 
 
 
 

 
 

Fig. 5. Geometric parameters of the model “B”. Mesh with 3002 nodes. 
 
 
 



Calculations were done with Algor FEA software and author’s additional module for failure 
criterion checking and mesh or element stiffness modifying. 

 
4. Crack propagation analysis 

From many cases of crack propagation process analyzed only a six cases will be shown in this 
paper. These cases are different in failure criteria or FEM meshes analyzed: 

1. PJ criterion, model “A”, mesh with 1844 nodes, 
2. PJ criterion, model “A”, mesh with 2079 nodes, 
3. Drucker-Prager criterion, model “A”, mesh with 2079 nodes, 
4. Huber-Mises criterion, model “A”, mesh with 2079 nodes, 
5. PJ criterion, model “B”, mesh with 3002 nodes, 
6. Drucker-Prager criterion, model “B”, mesh with 3002 nodes, 

 
Results of calculations for chosen cases are shown in figures below. Each of them includes 

two parts:  a) -  Pcr /P0  - Uy /U0  chart,  and  b) – stress map with crack path. Broken lines with 
crosses on the charts represent values of the critical force Pcr causing crack propagation on each step 
of FEM analysis, numbers printed near the crosses are the step numbers. Smooth curves printed on 
the charts are fit lines for calculated values of Pcr. On the horizontal axis, Uy  is the horizontal 
displacement of the monitoring node (y=0, z=-0.5). Force P0 and displacement U0  are conventional 
values taken as follows:  P0 = ft ⋅ 1m2 ,  U0 = 1m ⋅ f t / E . 
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(b) 
 

Fig. 6. Case #1 -  PJ criterion, model “A”, mesh with 1844 nodes. 
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(a) 

 

 
 

(b) 
 

Fig. 7. Case #2 -  PJ criterion, model “A”, mesh with 2079 nodes. 
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(b) 
 

Fig. 8. Case #3 -  Drucker-Prager criterion, model “A”, mesh with 2079 nodes. 
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Fig. 9. Case #4 -  Huber-Mises  criterion, model “A”, mesh with 2079 nodes. 
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(b) 
 

Fig. 10. Case #5 -  PJ criterion, model “B”, mesh with 3002 nodes. 
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Fig. 11. Case #6 -  Drucker-Prager criterion, model “B”, mesh with 3002 nodes. 
 

Comparing presented results we can point out that shape of the crack and value of critical 
forces observed in case of JP and Drucker-Prager criterion are similar. This is result of comparable 
evaluation of the critical loading in the region of shear stresses (compression-tension values of 
principal stresses, Fig. 1). For Drucker-Prager criterion somewhat lower values of critical forces was 
evaluated (cf. Fig 7-8 and Fig 10-11). Huber-Mises criterion gives completely different results in 
crack shape and critical force. This is result of exceeding limit stresses in compression region where 
both mentioned above criteria give large reserve in the limited stresses. 

Values of critical forces calculated by this method are visibly dependent on finite elements 
mesh density. For fine mesh slightly lower results can be observed. On the border between fine and 
coarse mesh domain a “force jump”  occurs (cf. step 35 on Fig. 7a-b and Fig. 8a-b).  

 
5. Conclusions 

Presented analysis points out significant dependency of crack shape and its direction on kind 
of failure criterion used. Similar results were observed by other authors [5] in the shear test 
simulation by FEM with Burzyński (analogical to Drucker-Prager criterion) and Huber-Mises 
criteria. 

Problems of crack propagation in brittle materials, in which biaxial stress state are 
dominating, can be analyzed with sufficient precision by Drucker-Prager criterion in the 
compression-tension region. In other regions in which principal stresses are both positive or 
negative, this simplification cannot be used. 

In the regions of high pressure or triaxial stress state, differences observed in crack shape and 
critical force values between two-invariant dependent criteria (like Drucker-Prager or Burzynski) 
and three invariant (like Coulomb-Mohr, Ottosen, Lade  or PJ criterion), are very significant. Some 
simple criteria, like Huber-Mises or Tresca, cannot be used for this media in any region. 

Values of  the critical forces calculated by “dead element” method are significantly dependent 
on the finite element mesh density.  
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Abstract 

Influence of three different types of the failure conditions on the shape and direction of the 
crack propagation in then elastic-brittle material is presented. Finite Elements Method and “death 
element” procedure have been used to modelling and analysis of the crack propagation.  

Huber-Mises, Drucker-Prager and author (PJ) failure criterion [1] are applied to the 
concrete-like or rock-like materials. 

 


