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CHAPTER II. 

STATICS OF 2D TRUSS STRUCTURES  

 
 2D trusses are one of the most often used types of structures. The structure of a truss 

is economic when it respects weight which means that the ratio of the structure weight to 

forces carried by this structure is expressed in small numbers. It happens so due to building a 

truss in which, according to assumptions, loads (concentrated forces) will act on nodes only 

(temperature loads are an exception here) and connection bars will be joined with nodes in an 

articulated way. Although most constructions which have been built lately are trusses with 

rigid nodes (they are basically frame constructions which are presented in Chapter IV), 

methods of solving problems in truss statics with articulated joints are still very important in 

engineering practice. The system of a plate truss with an articulated joint is the simplest 

example of an construction showing the idea of the finite element method without employing 

any complicated details. Hence this chapter will be extended  and sometimes too thorough but 

in subsequent parts of  the book we will refer to equations and relations which will be 

presented here. Moreover, though the structure of the method is very simple, most notions, 

algorithms and relations connected with the FEM algorithm will be important in discussions of 

more complex structures. 

2.1. BASIC RELATIONS AND NOTATIONS 

 We assume that the bar of a plate truss (we will also call it an element) is straight and 

homogeneous (it means that it is made from a homogeneous material without fractures and 

holes and is with a constant cross section) and it joins nodes i (the first node) and j (the last 

node). Notations of these nodes (i, j) are local notations which are the same for all bars and 

they are to define element orientation. On the other hand, structure nodes also have global 

numbers which allow us to identify them. Global numbers are marked as ni (the global number 

of the first node) and nj (the global number of the last node). The node of a plate truss can 

move on the plate XY only, in mechanics it means that the node has two degrees of freedom 

because in order to determine its location during its motion it should be given two coordinates. 

The situation of the node i of a rigid structure  will be determined by initial coordinates Xi, Yi 

with respect to the coordinate system which will be used for the description of the whole 

structure. We say that this system is global and its axes will be noted with capital letters X, Y. 
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The location of the node i, after its deformation caused by loads, is determined by two 

components of the displacement vector of nodes uiX and uiY. This method of description of the 

structure movement is called the Langrange description in mechanics. The description of  some 

dependence between forces and element displacements becomes much simpler when we 

introduce a local coordinate system which will be noted in small letters x, y. The x axis of the 

system overlaps the axis of the bar and has its beginning at the first node of an element i, while 

the y axis is perpendicular to the x axis and is directed in such a way that the Z axis of the 

global coordinate system and z axis of the local system have the same sense and direction. 

Because we accept that both coordinate systems are right-torsion, we can obtain the axis y by 

rotating the x axis clockwise by the angle /2. 

 The most important notations, directions as well as senses of vectors and the 

coordinate systems are shown in Fig.2.1. 

 

 
Fig.2.1 
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 Nodal displacements and forces of elements are written as column matrices which we 

will call vectors. We lead in the following notations: 

 The nodal displacement vector of the first node i and the last node j in the local coordinate 

system: 
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 The nodal displacement vector of the element e in the local coordinate system: 
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 The nodal forces vector of the first node i and the last node j in the local coordinate system: 
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 The nodal forces vector of the element e in the local coordinate system: 
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(2.4) 

2.2. THE ELEMENT STIFFNESS MATRIX OF A PLATE TRUSS IN THE 

LOCAL COORDINATE SYSTEM 

 We look for the relation between nodal force vectors and  nodal displacement vectors 

(comp. Chapter I), which is necessary to express equilibrium equations depending on the nodal 

displacements 

K u f' ' 'e e e . (2.5) 

 The general method of building such a relation consists in the use of the principle of 

virtual work (comp. Chapter I), but in this case we will not apply it and we will use the static 

analysis which is more clear and possible in the case of such simple elements as bar elements. 

 Equilibrium equations for the element e (Fig.2.1) lead to the following relations: 

F F Fx ix jx    0 ; 

F F Fy iy jy    0 ; 

 

(2.6) 
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M F Li jy   0 ; 

and we obtain 

Fiy  0 ; Fjy  0 ; F Fix jx  . (2.7) 

 Since the set of three equilibrium equations ((2.6) or (2.7)) contains four unknown  

parameters, this problem is statically indeterminable. The arrangement of  an additional 

equation is necessary in order to make the determination of nodal forces possible. This 

equation ought to use the relation between nodal displacements of an element and its internal 

forces. Hooke’s law written for a simple case of the  axial tension of a straight and 

homogeneous bar contains these relations (Fig.2.2): 

L
N L
E A

 , 
(2.8) 

where N is the axial force in the bar (the positive value of an axial force always means tension), 

L is the bar length, L signifies increment of the bar length due to the bar tension caused by the 

force N; E is Young’s modulus of the material from which the bar is made; A is the area of the 

bar cross section. 

 

 
Fig.2.2 

 Comparing Fig.2.1 and Fig.2.2 we can observe simple relations between nodal forces 

acting on the bar, that is, Fix, Fjx (Fig.2.1) and the axial force N (Fig.2.2): 

F Nix    ; F Njx  . (2.9) 

 As it is shown above these relations satisfy the third equilibrium equation (2.7) 

identically. 

 The increment of the bar length due to tension results from axial displacements of the 

bar endings: 

L u ujx ix  , (2.10) 

which after inserting into equation (2.8) leads to the relation: 

 N
EA
L

u ujx ix  . 
(2.11) 
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 Taking into consideration the relation between the axial force of the element and nodal 

forces (2.9) with respect to (2.11) we obtain 

 F
EA
L

u uix ix jx  ;  F
EA
L

u ujx ix jx   ; 
(2.12a) 

Fiy  0 ; Fjy  0 . (2.12b) 

 The obtained relations are the searched relations (2.5) between the nodal forces and 

nodal displacements of the truss element. We will write them one more time in a different 

form: 
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 0    uix    Fix     

 0 0 0 0    uiy  =  Fiy  .  (2.13) 
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After considering notations (2.2), (2.4) and (2.5), the above form leads to the equation: 
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K 'e =  0 0 0 0  ,  (2.14) 

  


EA
L

 0 EA
L

 0     

  0 0 0 0     

which defines a matrix K 'e . This matrix will be called the element stiffness matrix of a plate 

truss. The matrix in the form of equation (2.14) expresses relations between the vector u'e  and 

the nodal force vector of an element f 'e  in the local coordinate system. 

 The structure of the stiffness matrix K 'e  enables to simplify its transcript: 
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(2.15) 

where J' is the quadric matrix defined in the following way: 
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(2.16) 
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2.3. ROTATION OF A NODAL VECTOR -CHANGE OF A COORDINATE 

SYSTEM 

 The form of the element stiffness matrix determined in the local coordinate system 

will not be convenient in further considerations for which we will use matrices of different 

elements. The most convenient method is importing all matrices to the form which is defined in 

one common coordinate system. Such a system will be called the global coordinate system. It 

can be the system of a certain type: cartesian, polar or curvilinear. The cartesian coordinate 

system is the most convenient system for a truss. Nodal coordinates of a structure are usually  

given in the global coordinate system. 

 Now we lead the element stiffness matrix to the global system. We start 

transformations from finding relations for a single node: 

u u uiX ix iy cos sin  , 

u u uiY ix iy sin cos  , 

(2.17) 

or in a matrix form: 
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(2.18) 

where c  cos  and  s  sin . 

 
Fig.2.3 

Denoting 

u i
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(2.19) 

and taking into consideration notation (2.1) we obtain 

u R ui i i ' , (2.20) 
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where R i
c s
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(2.21) 

is the transformation matrix  of the vector u'i  from the local system to the global one. 

 A reverse relation will be required: 

 u R u'i i i
1

, (2.22) 

where  R i
1

 is the inverse matrix of Ri; it means that it has such a property that 
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1
, (2.23) 

where I is the identity matrix 

I 










1 0
0 1

. 
(2.24) 

The matrix Ri like other transformation matrices has the property that  
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it means that Ri is the orthogonality matrix (the determinant of this matrix is equal to 1, it 

means det(Ri)=1;  det R i
T
 1). We can easily check the property (2.25) of the matrix Ri 

making a direct calculation 
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The transformation matrix contains the blocks of the nodal transformation matrix: 

R
R 0
0 R

e i

j









 , 

(2.26) 

where Ri is the transformation matrix of the first node, Rj is the transformation matrix of the 

last node and 0 is the matrix containing zero values. The transformation matrices Ri and Rj are 

usually identical (for straight elements) because rotation angles of the vector of nodes i and j 

are equal. Since the truss elements are straight, we can write Ri =Rj.  

 Finally, the relations between the nodal displacement vector of the element expressed 

in the local system and the same vector in the global system have the form: 

u R ue e e '  (2.27) 

 u R u'e e e
T

 (2.28) 
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The relation between the nodal force vector of an element in the local system and the same 

vector in the global system is identical to the relation that we have obtained in the equations 

describing displacements 

f R fi i i '  (2.29) 

and 

 f R f'i i i
T

, (2.30) 

f R fe e e ' , (2.31) 

 f R f'e e e
T

. (2.32) 

2.4. THE ELEMENT STIFFNESS MATRIX IN THE GLOBAL 

COORDINATE SYSTEM 

 Multiplying equation (2.5) by the transformation of the matrix R e and substituting 

relation (2.28) for u'e , we obtain 

 R K R u R fe e e e e e' '
T

  (2.33) 

 On the basis of relation (2.31) the right hand side of this equation is equal to f e , so if 

we lead the notation 

 K R K Re e e e '
T

 (2.34) 

we obtain 

f K ue e e , (2.35) 

It is the searched relation between nodal forces and displacements of the element in the global 

coordinate system. 

 If we perform multiplication existing in equation (2.34) we obtain 
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 We can exchange form (2.37) of the matrix J into the equivalent one in which 

trigonometric functions do not exist. Let us note that 

c
L
L
X cos  and  s

L
L
Y sin . 

(2.38) 
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 After inserting these relations into (2.37), we obtain 

J 
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(2.39) 

 Example 2.E1 shows the use of equation (2.37) for determining coefficients of 

element stiffness matrices for a plate truss. 

2.5. NODAL EQUILIBRIUM EQUATIONS AND AGGREGATION OF 

A STIFFNESS MATRIX 

 Replacing existing bars (elements) of a truss by nodal forces we obtain a group of 

nodes which can be treated as material particles with two degrees of freedom. These nodes are 

loaded with concentrated forces coming from elements or external loads. The equilibrium 

conditions for such a node we write as follows: 

 P F PX nX
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0 , 

 P F PY nY
e

k

E

nY
k

n

    
1

0 , 

 

(2.40) 

where we have noted FnX
ek - component in the direction X of nodal forces from the element 

numbered ek acting on a node n, PnX - component in the direction X of the external forces 

acting on the node n, En - number of elements joined to the node n. 

 
Fig.2.4 
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 Now we are transforming the set of equations (2.40) to the form containing nodal 

displacements: 

 K K K K u p1 2n n in N n nn
    (2.41) 

 In equation (2.41)  
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(2.42) 

e e e ek En1 2,   - are numbers of elements joined to the node n, 

if i n  and nodes i and n are not directly connected by any elements, then K in  0 , 

if i n  and nodes i and n are connected by some element with a number e, then K Jin
e  , 

J e - signifies the block of a stiffness matrix of the element e (comp. equation (2.37)). 

 Arranging equilibrium equations (2.41) for all nodes of a structure we obtain the final 

form of equations serving determination of nodal displacements of the truss: 

 K 11  K12   K1n   K 1Nn
    u1    p1  

 K 21  K 22   K 2n   K 2 Nn
    u2    p2  

                  =     

 K n1  K n2   K nn   K nNn
    un    pn  

                       

 K Nn 1  K Nn 2   K N nn
  K N Nn n

    u Nn
    p Nn

  

 

or K u p  (2.43) 
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 The matrix K of the set of equations (2.43) is the global stiffness matrix of the 

structure, the vector u is the global vector of nodal displacements of the structure, the vector p 

is the global vector of nodal forces of the structure. 

 Proper numbering nodes can lead the matrix K to the banded matrix (comp. 

Example 2.E1) which is characterised by a fact that non-zero components appear on the main 

diagonal and closely to it. The matrix K is a symmetric matrix which means that its 

components satisfy equations: 

K Kij ji  or K K T  (2.44) 

which result from the principle of virtual work (comp. Chapter I). Components Knn which are 

on the main diagonal are always positive 

Knn  0  (2.45) 

which is a direct conclusion drawn from definitions (2.37) and (2.42). 
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nj K n nj i
K n nj j
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the last node of an
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element
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i     j

Je -Je i
Ke=

- Je Je j

+
+

+

+

 
Fig.2.5 
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 The zero component Knn testifies geometric changability of a structure and should be 

removed by a suitable change of a geometric scheme. The matrix K presented by equation 

(2.43) is a singular matrix (it means det K=0), hence the set of equations (2.43) cannot be 

solved without modifying it. This modification will depend on the consideration of boundary 

conditions. We will occupy with this problem in the next section.  

 The process of building the global stiffness matrix is called aggregation of a matrix. It 

can be done by means of the method described in Chapter I demanding formation of 

connection matrices. Since these matrices are large, then their use is not convenient and they 

are rarely used in computer implementation of the FEM algorithm. The method of summation 

of blocks shown by equations (2.41) and (2.42) is much simpler. The form of matrix equations 

(2.41) and (2.42) may seem to be complicated, but in fact, we have very simple operations of 

insertion of blocks here. This method is best shown in Fig.2.5. 

 Signs "+" located at arrows pointing to the place of location of blocks K e  mean that 

blocks J e  should be added to the existing contents of „cells” of matrices K n ni i
 or K n nj j

, and 

blocks  J e  lying beyond the diagonal should be added to „cells” K n ni j
or K n nj i

. In the case of 

a truss where nodes are usually joined by one element, blocks lying beyond the main diagonal 

contain only a single matrix  J e . But blocks lying on the main diagonal K n ni i
contain sums of 

as many matrices J e as many elements are joined with the node ni. An adequate example 

explaining the technique of aggregation of the stiffness matrix is contained in example 2.E1. 

2.6. BOUNDARY CONDITIONS 

 As it was noted in the previous section of this Chapter the global stiffness matrix of a 

structure is most often a singular matrix directly after the aggregation. It means that the 

determination of this matrix is equal zero. Because the set of equations (2.43) has to have only 

one solution for static problems, we have to modify the global stiffness matrix. It should be 

done in such a way that the solution of the set of linear equations (2.43) is possible. The reason 

for singularity of the matrix K is the lack of information about supports of the construction. 

We have never used information about support conditions, thus we ought to define what the 

support of the node is. 
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 For trusses there are two types of supports possible: an articulated support and an 

articulated movable support. The articulated support (scheme of this support is shown in 

Fig.2.6a) prevents movements of a node in any direction which means: 

urX  0 , urY  0 . (2.46) 

The movement of the support node r causes reactions in two components: RX and RY 

(Fig.2.6a), which counteract the movement of the node r. We say that this support assures free 

support of a node. 

 

 
Fig.2.6. Types of supports of a plate truss 

 The next support shown in Fig.2.6b is called an articulated movable support and it 

prevents movements of a node along one line only, then it enables the movement of a node in 

perpendicular direction with respect to this line. The reaction occurring in the articulated 

movable support can have the direction of this line only (Fig.2.6 b, c, d). The support can 

appear in a few variants, two most often occurring variants (shown in Fig.2.6 b, c) give very 

simple support conditions: 

– support with the possibility of a movement along the Y axis of the global coordinate system 

(Fig.2.6 b) 

u rX  0 , (2.47) 

– support with the possibility of a movement along the X axis of the global coordinate system 

(Fig.2.6 c) 

u rY  0 . (2.48) 
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 The third variant of  a movable support causes us some problem with describing the 

boundary conditions because the direction of the reaction of this support (Fig.2.6 d) is not 

parallel to any axis of the global coordinate system. It is important because equilibrium 

equations (2.40) leading to equation (2.43) were written in the global coordinate system. In the 

case of a support with a movement not parallel to any axis of the global coordinate system (we 

will call such supports skew supports) we have to renounce this convenient manner and we 

have to write the boundary conditions in the system x'y' connected with the support. The 

system x'y' is rotated with respect to the global system by an angle ' (Fig.2.6d). We will 

elaborate the transformation method for a set of equations at a support node to the local 

system in the next section. Now we will focus on describing the boundary condition. We write 

the condition of absence of a movement along the y' axis analogously as in equation (2.48): 

u ry '  0 . (2.49) 

 Equations ((2.46) ... (2.49)) describing the boundary conditions give us the values of 

displacements in support nodes. Hence some equations of set (2.43) should be removed, 

because they contain unknown forces acting on support nodes (constraint reactions). These 

equations can be replaced by equations of boundary conditions (for example (2.46)). It is 

usually done by modifying some equations (2.43). 

 Let m mean the global number of a degree of freedom which is eliminated by the 

boundary condition: um  0 , then we modify the row with the number m in the global stiffness 

matrix K, replacing it by a row containing zeros and the value 1 in the column m: 

 K 11  K12   K1m   K 1Nn
    u1    P1  

 K 21  K 22   K 2m   K 2 Nn
    u2    P 2  

                  =     

 0 0  1  0    um    0  

                       

 K Nn 1  K Nn 2   K N mn
  K N Nn n

    uNn
    PN n

  

 

or K u po r . (2.50) 

 The nodal load vector p should be modified so that equation m contains zero on the 

right side. The modified matrices are marked in equation (2.50) by an upper index r. 



 45 

 These changes in the stiffness matrix disturb the symmetry of it because Kim  0  but 

Kmi  0  when i m  (comp. (2.50)). The absence of symmetry in the stiffness matrix does not 

prevent solving of equilibrium equations (2.43) but it considerably loads the computer memory 

storing coefficients Kij either in the core memory (RAM) or external space (disk) which 

lengthens the solution time for a set of equations (comp. Appendix 2). Thus, let us try to 

restore the symmetry of the matrix K o (2.50). Let us note that the terms located in the column 

with the number m are multiplied by the zero value of the displacement um. Hence we can 

insert zeros instead of coefficients in the column m (except for one coefficient in the row m 

which has to be equal to 1). If we modify the stiffness matrix in that way, the solution of our 

problem will be the same and the matrix will be a symmetric one: 

  K 11  K12   0  K 1Nn
     

  K 21  K 22   0  K 2 Nn
     

K r                  (2.51) 

  0 0  1  0     

                 

  K Nn 1  K Nn 2   0  K N Nn n
     

Finally, we solve the problem: 

K u pr r , (2.52) 

where the matrix K r is symmetrical and is not singular which means that det K r  0 , if we 

have properly chosen the boundary conditions. On the basis of the theorem about the positive 

value of a strain energy (comp. equation (1.45), Chapter I) we can conclude that the matrix 

K r  has to be positive-determined, then 

det K r  0 . (2.53) 

 Hence the set of equations (2.52) has one solution. 

 In small finite element systems (programmes) the matrix K r  is usually left  in the 

form noted in equation (2.51). Large and complex systems prepared to solve problems 

described by many thousands of equations usually remove rows and columns containing zeros 

from the matrix K r  and vector pr . It is done to reduce dimensions of a solved problem. This 

method of modification of the matrix K r  needs new numbering of degrees of freedom of a 
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structure. Because it is not strictly joined with FEM and is connected with the computer 

implementation of the FEM algorithm, we will not describe it here. 

2.7. TRANSFORMATION OF THE STIFFNESS MATRIX FOR A „SKEW” 

SUPPORT 

 Now we are elaborating ways of transformation of an element stiffness matrix joined 

to a support node by means of a „skew” support (Fig.2.6d). We chose the coordinate system 

x'y' in such a way that the direction of a support reaction covers the y' axis and a movement 

line will be parallel to the x' axis (an opposite choice of the local coordinate system is obviously 

possible). The x' axis is rotated with respect to the X axis of the global system by the angle ' 

which we will deem to be positive when the rotation from the X axis to the x' axis will be 

anticlockwise. The positive angle ' is shown in Fig.2.6 d. 

 If we write equilibrium equations for the support node r in the system x'y', then the 

boundary condition of this support is determined by equation (2.49). Let us try to perform the 

necessary transformation. We make use of  relations (2.20) and (2.22) which served us in 

Sec.2.3 to pass from the  local system of an element to the global one. 

 Then we express the nodal forces vector at the node r as follows: 

F
F

c s
s c

F
F

rx

ry

rX

rY

'

'

' '
' '









  
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




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







 , 

or in a shorter form: 

 f R f' 'r r r
T

. (2.54) 

Next we transform the nodal displacements vector of the support node from the local system 

to the global one as follows: 

u
u

c s
s c

u
u
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'
, 

or in a close form: 

u R ur r r ' ' . (2.55) 

 In equations (2.54) and (2.55)we have marked 

R '
' '
' 'r

c s
s c









 , c' cos '  , s' sin '   

and  R 'r
T

 is the transpose of the matrix R 'r . 
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 Let us assume that an element e joins nodes ri and rj supported by „skew” supports 

which are rotated by angles 'i  and ' j  (Fig.2.6). Then we write equilibrium equations for 

nodes ri and rj in the local coordinate system x yi i' '  at the node ri and x yj j' '  at the node rj. 

The transformation of nodal forces vectors and nodal displacements vectors of the element e 

looks as follows: 

– for a nodal forces vector 

 f R f' 'e e e
T

 (2.56) 

or in a developed form 
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– for the nodal displacements vector 

u R ue e e ' '  (2.57) 

or 
u
u

R 0
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Fig.2.7 

Inserting relation (2.57) into (2.35) and next the obtained results into (2.56), we get the 

equation transforming the stiffness matrix of the element e from the global coordinate system 

to the support coordinate system: 

 f R K R u' ' ' 'e e e e e
T

 (2.58) 



 48 

We simplify this equation to the form: 

f K u' ' 'e e e , (2.59) 

in which we make use of the substitution: 

 K R K R' ' 'e e e e
T

, (2.60) 

defining the element matrix in the support coordinate system. 

 One of angles ' (Fig.2.7) is most often equal to zero because it rarely happens that a 

truss bar joins two support nodes supported by a „skew” support. The transformation matrix 

of a zero angle is a unit matrix. Because (c'=1, s'=0), then  the element transformation matrix is 

simplified to the form:  

R
R 0

0 I'
'e ri









 , 

(2.61) 

when the second node is described in the global system but we transform forces and 

displacements at the first node ri, and 

R
I 0
0 R' '

e

rj














, 
(2.62) 

when the transformation concerns the last node rj only. 

 As it has been shown, the existence of „skew” supports complicates the simple FEM 

algorithm presented in Chapter I because it requires additional transformations of element 

stiffness matrices before the aggregation of the global matrix is done. There are some other 

simpler though approximate methods of solving this problem and they will be discussed in the 

next section concerning boundary elements. 

2.8. ELASTIC SUPPORTS AND BOUNDARY ELEMENTS 

 Not all kinds of supports applied to support trusses can be described by the boundary 

conditions of types (2.47), (2.48) and (2.49). There are flexible supports which have 

displacements connected with a support reaction, for instance, the linear relation of the 

following type: 

R h urX rX rX  , 

R h urY rY rY  , 

(2.63) 

where hrX  is the support stiffness in the direction of the X axis and hrY is the support stiffness in 

the direction of the Y axis. The linear spring shown in Fig.2.8 is a good model of this type of 

support. 
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Fig.2.8 

 If we treat reactions RrX and RrY acting on the node supported elastically as external 

forces, then we obtain the nodal forces vector containing unknown displacements urX, urY: 

  P1X  1 
  P1X    

  P1Y     P1Y    
  P2X  2 

  P2X    

  P2Y  
 

  P2Y    

p=       =      (2.64) 

  RrX   r    h urX rX     

  RrY       h urY rY     

              

  PN Xn
  

Nn 
  PN Xn

    

  PN Yn
     PN Yn

    

 The vector p cannot be absolutely used as the right hand side of equation (2.43) 

where unknown values of nodal displacements should be on the left hand side of the equation. 

Now we are transforming the vector p described by equation (2.64) in such a way that nodal 

reactions of  the elastic node r will be moved to the left hand side of the equilibrium equation: 

K u ps r , (2.65) 

where K s is the stiffness matrix containing information about elastic supports of the structure 

and p r  is the nodal forces vector in which the boundary conditions written in equation (2.50) 

(we can treat the elastic supports as fixed ones after transferring describing them relations to 

the left hand side of the equation) are considerated. 
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The matrix K s is written by the equation: 

  K 11  K12   K1m  K 1 1( )m   K 1Nn
   

1  

  K 21  K 22   K 2m  K 2 1( )m   K 2 Nn
   

 
 

             
  

 

K s    K m1  K m2   K mm rXh  K m m( )1   K mNn
   

r (2.66) 

  K ( )1m1  K ( )m1 2   K ( )m m1  K ( )( )m m rYh  1 1   K ( )m Nn1    
 

 

             
Nn 

 

  K Nn 1  K Nn 2   K N mn
 K N mn ( )1   K N Nn n

   
 

 

where m is the global number of the first degree of freedom of the node r. With standard 

numbering m=(r-1)ND+1  ND is the number of degrees of freedom of  the node. For  a 2D truss 

ND=2, the number of the first degree of freedom of the node r is equal to m=2r-1. 

 At this stage the modified matrix K s  contains the stiffness of elastic supports which 

are added to the terms coming from the truss element of a construction. These sums are 

located on the main diagonal of the matrix in rows describing the equilibrium of the node r. 

Such an interpretation of elastic supports leads to a convenient although simplistic way of 

considering fixed supports. We substitute them for elastic supports with very large stiffness 

inserting the numbers equal to for example H=11030 onto the main diagonal. This method was 

formulated by Irons [7] who multiplies terms lying in a suitable row on the diagonal of the 

matrix K by numbers of the order of 106. After inserting a high value onto the diagonal, it is 

redundant to insert zeros both in rows and columns of the matrix K as well as rows of the 

vector of the right hand side p. It is very important for large stiffness matrices which are often 

stored in structures of data different from quadratic tables (comp. Appendix 2). The simplicity 

of this way causes that it is commonly used in the computer implementation of the FEM 

algorithm instead of the exact method described in Sec.2.6. 

 Elastic supports also suggest the use of a special support element which could 

substitute any elastic constraints and fixed supports (which should be treated as elastic 

supports with large stiffness). This support element rotated by an angle  with respect to the 

global coordinate system is shown in Fig.2.9. 
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Fig.2.9 

 We can easily obtain the stiffness matrix of such an element from the matrix of an 

ordinary truss element described by equation (2.14) in the local coordinate system or equation 

(2.36) in the global system. We do it in such a way that we substitute the stiffness of a bar 

EA/L for the stiffness of the elastic boundary element kb. In general, the node o of this element 

is always fixed, so we can remove it from the set of equations which allows us to treat the 

boundary element as an element with two degrees of freedom: 

K b
bk

c sc
sc s












2

2 , 
(2.67) 

where similarly to equation (2.37) c  cos , s  sin . 

 When we want to substitute the fixed support for this element we accept kb=H. The 

value of the number H depends on the computer system in which the programme will be 

started and most of all it depends on the type of real numbers. We can take for example 

H=11030  as reference for many systems. 

2.9. THE NODAL LOADS VECTOR WITH TEMPERATURE LOAD 

 As we have already noted in the introduction to this Chapter, unique loads of a truss 

which  act on elements and do not act on nodes directly are temperature loads. Now we are 

showing how we can lead this load to known to us loads, that is, concentrated forces acting on 

the nodes of a construction. 

 
Fig.2.10 
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 As we know the increase in a temperature of an element causes its lengthening which 

with the assumption of a steady increase in a temperature on the whole length of a bar is 

described by the equation: 

 t t o
L

L
t 


 , 

(2.68) 

where t is the coefficient of thermal expansion of the material from which the element is 

made, to stands for an increment of a temperature in middle fibres (joining centres of gravity 

of  cross sections of an element). 

 We assume a steady increase in a temperature in the whole section and homogeneity 

of the material. If we accept that the element has no freedom of lengthening but is limited by 

fixed nodes, we obtain an axial force which rises within the element: 

N d E dA E t dA E t At t t o t o
AAA

            , (2.69) 

where E is Young’s modulus of the material and A signifies the surface area of the cross 

section of the element. 

 The nodal forces vector of the element due to the temperature written in the local 

coordinate system xy is equal to: 
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(2.70) 

after transformation to the global system with the help of relation (2.31) we obtain 
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  , 

 

(2.71) 

where c  cos , s  sin ,  - is the angle determining a slope of the loaded element with 

respect to the global coordinate system. 

 Since forces acting on the nodes are necessary to arrange equilibrium equations, and 

as it is known, they are reversely directed to other forces acting on elements, then while 

building the global nodal forces vector we subtract them from other forces. It is shown in 

Fig.2.11. 
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Fig.2.11 

2.10. THE GEOMETRIC LOAD OF A TRUSS 

 The final type of a truss load which we will describe is the geometric load (forced 

displacements of  nodes). 

 We assume that the node r is displaced by the vector d (Fig.2.12). Surely, it is 

necessary to apply forces to the node to cause this displacement. Values of these forces are not 

known, whereas we know components of the displacement of the node r: 

u drX X , u drY Y , (2.72) 

where dX, dY are the components of the vector of the forced displacement d.  
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Fig.2.12 

 Equation (2.72) is like the known equations of the boundary conditions (2.47) and 

(2.48) but with one difference, here we have obtained nonhomogeneous equations. It changes 

the procedure of symmetrization of the stiffness matrix. Previously we inserted zeros into 

suitable columns of the matrix K which did not induce any consequences because this matrix 

was multiplied by zero values of displacements of the support nodes. At this moment we have 

to keep the components of the matrix occurring in this column because they are multiplied by 

given displacements (comp. equation (2.72)) and they are usually not equal to zero. 

 Hence transformations of the stiffness matrix K and nodal loads vector p leading to 

the consideration of the geometric load should look as follows: 

1. We form vectors krX and krY which are suitable columns of the matrix K joined with the 

displacements of the node r. krX  is the column with a number equal to the displacement 

global number urX and krY  is the column with a number equal to the displacement global 

number urY. 

2. We move the nodal forces due to the known displacements dX and dY to the right hand side 

of the set of equations: 

p p k kd
rX X rY Yd d   . (2.73) 

3.  We consider boundary conditions in a standard way as it was done in Sec.2.6. However, 

there is one difference, we put known values into the rows of the right hand side vector pd . 

These rows have the global numbers equivalent to the degrees of freedom urX and urY.  

 After making the above transformations, the following set of equations rises: 

K u pr rd , (2.74) 

where K r is the stiffness matrix which is modified by the standard consideration of the 

boundary conditions as in equation (2.51) and p rd  is the modified vector pd determined by 

equation (2.73) after inserting given values of displacements: 
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P drX X  , P drY Y . 
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Fig.2.13 
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2.11. SUPPORT REACTIONS, INTERNAL FORCES AND STRESSES IN 

ELEMENTS 

 After aggregation of the stiffness matrix, consideration of the boundary conditions 

and building the nodal forces vector we obtain the set of linear equations in forms (2.52) or 

(2.65), or (2.74) with a positively determined symmetric matrix. Methods of solving such 

equations are described in Appendix 2. The solution of the set of equations is the nodal 

displacements vector of a structure. Knowing nodal displacements allows us to determine 

control sums of nodes and support reactions in the support nodes in a very simple way. And 

then we make use of equation (2.43) in which the matrix K does not contain any information 

about the support constraints. 

r K u p  . (2.75) 

 The vector of reactions r should contain zeros at free nodes and values of reactions at 

support nodes. If we assume the occurrence of the local coordinate system in some nodes (the 

„skew” supports), then the obtained components of reactions will be expressed in the local 

coordinate system. 

 Since numerical errors resulting from approaching values of numbers stored in the 

computer memory increase during the solution process, the control sums are rarely equal to 

zero and they are most often small numbers, for example the order of 110-10. 

 Components of the global displacements vector enable building global displacements 

vectors of  elements (Fig.2.14). 

 Since the components of the vector u are not always written in the global coordinate 

system (the „skew” supports), then it can happen that some components of the vector ue  are 

expressed in the global system and others are expressed in the local coordinate system . To 

simplify further discussion we standardise the description of the vector bringing down the 

components to the global coordinate system by taking the advantage of equation (2.57). It 

should be noted that it is necessary only for elements joined to a node which is supported by a 

skew support. 
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Fig.2.14  

 Nodal displacements of an element allow to calculate the internal force N in a truss 

element quite easily. We can either make use of equation (2.11) which requires the knowledge 

of displacements in the local coordinate system of the element or on the basis of equations 

(2.9), (2.13) and (2.32) we search the relation: 

    N
EA
L

c u u s u ujX iX jY iY    , 
(2.76) 

where similarly to equation (2.18) c  cos and s  sin . 

 Stresses in the truss element, assuming that the bar is homogeneous, are the axial 

stresses only which can be calculated using a simple relation: 

     x jX iX jY iY
N
A

E
L

c u u s u u     . 
(2.77) 



 58 

 If the element is loaded with a temperature, then the correction coming from thermal 

expansion of the material shown in equations (2.76) and (2.77) should be taken into 

consideration: 

           x t jX iX jY iY t oE
E
L

c u u s u u L t         
(2.78) 

and 

      N A
EA
L

c u u s u u L tx jX iX jY iY t o        . 
(2.79) 

 The calculation of displacements, constrained reactions and internal forces in the 

element finish the static analysis of the truss. 
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