Example 2.E1.

The content of the example

Fig.2.E1.1 shows a 2D truss made from wood (Young’s modulus E=1.2:10" kPa),
loaded with concentrated forces acting on two nodes. The truss is composed of elements (bars)
with three different cross sections. The bars of a bottom flange (elements No 1, 2, 3) have the
cross section A-A, the bars of a top flange (elements No 4, 8, 9) have the cross section B-B,
the cross-braces and the posts (elements No 5, 6, 7) have the cross section C-C.

Determine the global stiffness matrix of this truss, the vector of global nodal forces,

mternal forces and stresses in the elements.
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Data concerning nodal coordinates and the load of the truss are collected in
Tab.2.E1.1. Data concerning elements like node numbers (n;, n;), the projections of the
elements on the axes of the global coordinate system (L., L,), the angles of inclination with

regard to the axis (o) and the surface of the cross section (4) are given in Tab.2.E1.2.
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Tab.2.E1.1

Node No X, Y, Py, Py,

n [m] [m] [kN] | [kN]

1 0.0 1.0 | = | -

2 3.0 3.0 -3.464 -2.0

3 3.0 0.625 | === | ------

4 6.0 025 | - | -

5 8.0 2.0 3.5 | -

6 8.0 0.0 | - | -

Tab.2.E1.2
Elem. No| Node No L.x L,y L, a, Section A

n noon [m] | [m] [m] [deg] No [m’]
1 1 3 3.0 |-0.375(3.02335 | -7.125 A-A 2.5:10°
2 3 4 3.0 |-0.375(3.02335 | -7.125 A-A 2.5:107
3 4 6 2.0 | -0.25 |2.01556 | -7.125 A-A 2.5:10°
4 1 2 3.0 2.0 |3.60555| 33.690 B-B 4.0-10°
5 3 2 0.0 | 2375 | 2.375 90.000 C-C 9.0-10™
6 2 4 3.0 | -2.75 [ 4.06971 | -42.510 C-C 9.0-10™
7 4 5 2.0 1.75 |2.65754 | 41.186 C-C 9.0-10™
8 6 5 0.0 2.0 2.0 90.000 B-B 4.0-10°
9 2 5 5.0 -1.0 | 5.09902 | -11.310 B-B 4.0-10°
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The solution of the example

We start solving the problem from building the vector of global nodal forces, which is
very simple when the truss is loaded with concentrated forces only. The data juxtaposed in
Tab.2.E1.2 are applied to building the vector p:

Global Global
node  number of
number  degree of

freedom
0.0 ] ]
0.0 )
-3.4641 ) 3
-2.0 4
0.0 5 5
p= 0.0 5
0.0 4 .
0.0 s
-3.5 5 0
0.0 10
0.0 6 11
i 0.0 | 12

Since no concentrated forces load a support node, the vector of global nodal forces,

after taking into consideration boundary conditions, is identical

7

P =P
Now we form element stiffness matrices of the truss. As we showed in Chapter II,
element stiffness matrices are build of the matrices J°with dimensions 2x2 (comp. (2.37)). On

the basis of equation (2.37) we determine

9770.12  -1221.27 9770.12  -1221.27

J'= =
-1221.27  152.66 -1221.27  152.66
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14655.18 -1831.90 9216.56  6144.37
J= J=

-1831.90  228.99 6144.37  4096.25

0.00 0.00 1442.04 -1321.87
J= Jo=

0.00 4547.37 -1321.87 1211.71

2301.69  2013.98 0.00 0.00
¥= Ji=

2013.98 1762.23 0.00 24000.00

9051.51 -1810.30
J=

-1810.30 -1810.30

We form the stiffness matrix from the following blocks:

1 2 3 4 5 6
UL -J? -J' 1
-J? JHP+I+)° F -J° -J 2
K= -J' -J N e -J 3
-J° -J J+P+I+) -y -J 4
-J -J J+I5+)° -J° 5
-J -J° J+J8 6

and after substituting previously obtained matrices J°, we obtain all components of the matrix

K which are tabulated on the next page.
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The global stiffness matrix:

1 2 3 4 5 6
I 18986.7 4923.1 | -9216.6 -6144.4 | -9770.1 1221.3 0 0 0 0 0 0 i ]
4923.1 42489 | -61444 -4096.2 | 1221.3  -152.7 0 0 0 0 0 0
-9216.6 -6144.4 | 19710.1 3012.2 0 0 -1442.0  1321.9 | -9051.5 1810.3 0 0 5
-6144.4  -4096.2 | 3012.2 10217.4 0 -4547.4 | 13219 -1211.7 | 1810.3  -362.1 0 0
-9770.1  1221.3 0 0 19540.2 -2442.5 | -9770.1 1221.3 0 0 0 0 3
K= 12213  -152.7 0 -4547.4 | -2442.5 48527 | 12213  -152.7 0 0 0 0
0 0 -1442.0 13219 | -9770.1 1221.3 | 28169.0 -2361.1 | -2301.7 -2014.0 |-14655.2 18319 [,
0 0 1321.9 -1211.7 | 1221.3  -152.7 | -2361.1 3355.6 | -2014.0 -1762.2 | 1831.9  -229.0
0 0 -9051.5  1810.3 0 0 -2301.7 -2014.0 | 11353.2  203.7 0 0 5
0 0 1810.3  -362.1 0 0 -2014.0 -1762.2 | 203.7 26124.3 0 -24000.0
0 0 0 0 0 0 -14655.2 1831.9 0 0 146552 -1831.9 | .
0 0 0 0 0 0 1831.9  -229.0 0 -24000.0 | -1831.9 24229.0
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The global stiffness matrix after taking into consideration boundary conditions:

1 2 3 4 5 6
I 1 0 0 0 0 0 0 0 0 0 0 0 i ]
0 1 0 0 0 0 0 0 0 0 0 0
0 0 19710.1 3012.2 0 0 -1442.0 1321.9 | -9051.5 1810.3 0 0 5
0 0 3012.2  10217.4 0 -4547.4 | 13219 -1211.7 | 1810.3  -362.1 0 0
0 0 0 0 19540.2 -2442.5 | -9770.1 1221.3 0 0 0 0 3
K = 0 0 0 -4547.4 | -2442.5 48527 | 12213  -152.7 0 0 0 0
0 0 -1442.0 1321.9 | -9770.1 1221.3 | 28169.0 -2361.1 | -2301.7 -2014.0 |-14655.2 0 4
0 0 1321.9 -1211.7 | 1221.3  -152.7 | -2361.1 3355.6 | -2014.0 -1762.2 | 1831.9 0
0 0 -9051.5 1810.3 0 0 -2301.7 -2014.0 | 11353.2  203.7 0 0 5
0 0 1810.3  -362.1 0 0 -2014.0 -1762.2 | 203.7 26124.3 0 0
0 0 0 0 0 0 -14655.2 1831.9 0 0 14655.2 0 5
0 0 0 0 0 0 0 0 0 0 0 1
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The boundary conditions are described by the equations:
Uix=0,u1y=0, ugy=0.
Global numbers of the degrees of freedom of these displacements are equal to
u1x —> No 1; u1y = No 2; ugy = No 12, respectively.
We lead in the modification in the equations with the above numbers consisting in the insertion
of zeros into rows of the matrix K and leading in 1 on the main diagonal of this matrix. After

the symmetrization of the matrix (the insertion of zeros into suitable columns) we obtain the
matrix K' presented on the next page. The modified components are marked in italic fonts. As
it was noticed in Chapter II the matrix K"is a positively determined matrix, thus, its
determinant has to be bigger than zero. For our matrix we calculate
det(K") =2177283382-10°" >0.

Now we solve the set of equations
K'u=p’,
with the use of the algorithm given in Appendix 2 we obtain the nodal displacement vector of

the truss u and after inserting it into equation (2.75), we get the constraint reaction vector r:

0.0
0.0

-8.70282E-4
6.01511E-4

-1.94920E-4
6.01511E-4

-5.62319E-4
-1.76807E-4

-1.24382E-3
2.30635E-5

-5.40219E-4
0.0

6.964
2.554

The nodal displacement vector u can be used to draw the scheme of the deformation of

the structure which is shown in Fig.2.E1.2.
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Fig.2.E1.2

On the basis of equation (2.76) we calculate internal forces for the elements and from
equation (2.77) we determine stresses. The values of the nodal displacements, internal forces

and stresses for the elements are given in Tab.2.E1.3.
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Tab.2.E1.3

We obtain columns marked by u;x, u;y, v, u;y in the way shown in Fig.2.14

No Uix Uiy Uiy Uy Uix Ujy N o}
n [m] [m] [m] [m] [m] [m] [kN] [kN/m’]
(2.22) (2.22) (2.76) (2.77)
1 0.0 0.0 -1.94920E-4| 6.01511E-4 0.0 -2.68023E-3 -2.660 -1063.8
2 |-1.94920E-4 | 6.01511E-4 |-5.62319E-4 | -1.76807E-4 | -2.68023E-3 | -5.36046E-3 -2.660 -1063.8
3 |-5.62319E-4|-1.76807E-4 | -5.40219E-4 0.0 -5.36048E-3 | -5.36049E-3 0.0 0.0
4 0.0 0.0 -8.70282E-4| 6.01511E-4 0.0 -3.90460E-3 -5.198 -1299.5
5 |[-1.94920E-4| 6.01511E-4 |-8.70282E-4| 6.01511E-4 | 6.01511E-3 | 6.01511E-3 0.0 0.0
6 |[-8.70282E-4| 6.01511E-4 |-5.62319E-4 | -1.76807E-4 | -1.04799E-2 | -2.95043E-3 1.998 2220.1
7 |-5.62319E-4 |-1.76807E-4 | -1.24382E-3 | 2.30635E-5 |-5.39616E-3 |-9.20881E-3 -1.549 -1721.6
8 |-5.40219E-4 0.0 -1.24382E-3 | 2.30635E-5 0.0 2.30635E-4 0.554 138.4
9 |-8.70282E-4| 6.01511E-4 |-1.24382E-3 | 2.30635E-5 |-9.71348E-3 | -1.22419E-2 -2.380 -595.0
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