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CHAPTER VII. 

STATICS OF PLATES 
 

 Plates are one of the most often used elements in structures. They can be found in 

almost every building or mechanic structure. The geometric shape of a plate can be defined 

similarly to a 2D element (Chapter VI), but they differ in the way of loading. Plates are loaded 

with normal loads to their surfaces which cause their bending. Bending is not present in case of  

the deformation of the 2D element.  

 Analytic methods of the determination of both deflections and internal forces were 

described by Euler, Bernoulli, Germain, Lagrange, Poissona and specially by Navier in  papers 

which appeared on the turn of the 18th century [16]. Literature devoted to the theory of plates 

is unusually reach, the books [9], [11], [18] can be recommended to interested readers. 

 Many important statics and dynamics problems of plates were solved by analytic 

methods (mainly by the method of the Fourier series), but they disappoint both in the case of 

problems with complex boundary conditions and complicated shapes of plates. However, the 

finite element method has proved to be universal and although it gives approximate solutions, 

they are precise enough for practical applications. 

7.1. BASIC ASSUMPTIONS AND EQUATIONS OF THE CLASIC 

THEORY OF PLATE 

 We assume that plates which we will occupy with satisfy the assumptions of the 

classic theory of thin plates [18]: 

a) thickness of a plate is small in comparison with its other dimensions; 

b) deflections of plates are small in comparison with its thickness; 

c) middle plate does not undergo lengthening (or shortening); 

d) points lying on the lines which are perpendicular to the middle plate before its deformation 

lie on these lines after the deformation; 

e) components of stress which are perpendicular to the plane of the plate can be neglected. 

 It comes from point d) of the above assumptions that the displacement of points lying 

within the plate changes linearly with its thickness Fig.7.1: 
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Fig.7.1 

 Thus stains are expressed by the relations: 
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The strain vector can be presented in the form: 

 = -z w(x,y), (7.3) 

where vector  is the vector of differential operators: 
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 Let us assume that there is a plane stress in the plate, so the stress vector can be 

determined as follows: 

 = D = -z D w(x,y),  (7.4) 

where D is the matrix of material constants determined for plane stress (equation Błąd! Nie 

można odnaleźć źródła odwołania.)). 

 Now we lead in the expression of internal forces (moments and shearing forces - 

Fig.7.2)  
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Fig.7.2 

 The equilibrium of an infinitesimal plate element shown in Fig.7.2b leads to the set of 

equations: 
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 After doing integration (7.5) taking into consideration (7.4), we obtain 
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(7.7) 

where D denotes the plate stiffness defined by the  equation 
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 From the last two equations (7.6) we obtain relations determining the shearing forces: 
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 Inserting the above equation describing shearing forces into the first equations (7.6) 

we obtain 
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 It is a biharmonic partial differential equation which should be satisfied by the function 

of deflection w(x,y) within the plate. The following boundary conditions should be realised at 

the edges of the plate: 

a) w = 0, 


w
n
 0  - on the fixed edge, 

b) w = 0, 

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2

2 0
w

n
  - on the free supported edge, 

c) Mn = 0, Vn = 0 - on the free edge. 

 In the above equations n defines the direction of the line which is perpendicular to the 

edge and Vn is the reduced force led in by Kirchhoff [18] in 1850. This force joins the influence 

of the torsion moment Mns and the shearing force Qn on the free edge Fig.7.2b: 
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where n describes the direction of the line which is perpendicular to the edge and s is the 

direction of the line which is parallel to the edge of the plate. 

 The modification of the boundary conditions is necessary here because the fourth 

order equation (7.10) cannot be solved for three boundary conditions coming from the 

requirement of stress disappearance on the free edge: 

Mns = 0, Mn = 0, Qn = 0. 

7.2. A FINITE TRIANGULAR ELEMENT OF A THIN PLATE 

Now we show the way of building the stiffness matrix of a triangular element of a thin plate 

(Fig.7.3). 

 

Fig.7.3 

 

 We also introduce a few convenient notations: 

– w(x,y) stands for the function of displacement of the middle plate of an element; 
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– 

x
w
y

 is the rotation angle of the element around the x axis; 

– 

y
w
x

   is a rotation angle of the element around the y axis. 

 As it is seen in Fig.7.3 the node of a plate element has three degrees of freedom. 

Hence nodal displacement vectors of the element in the local system can be written as follows: 
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and an element displacement vector: 
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 Directions of both nodal displacements and forces (Fig.7.3b) are the same, so the 

nodal forces vectors have similar notations: 
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 Hence we write the nodal force vector of the element as follows: 
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 We approximate the surface of the deformed element by the polynomial of the third 

order proposed by J.LTocher in 1962: 
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(7.16) 

where 
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 We determine the coefficients a1 ... a9 of the function w(x,y) from the boundary 

conditions at the nodes i, j, k: 

w x y wi i i( , )  ,  x i i ixx y( , )  ,  y i i iyx y( , )  , 

w x y wj j j( , )  ,  x j j jxx y( , )  ,  y j j jyx y( , )  , 

w x y wk k k( , )  ,  x k k kxx y( , )  ,  y k k kyx y( , )  . 

 

(7.17) 

 After calculating the rotation angles, we obtain 
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 Now we insert equations (7.16) and (7.18) into boundary conditions (7.17) obtaining: 

M a u 'e , (7.19) 

where M is the quadratic matrix dependent on nodal coordinates of the element. 

  A1 a2 a3 a4 a5 a6 a7 a8 a9    

  1 0 0 0 0 0 0 0 0   wi  

  0 0 1 0 0 0 0 0 0  ix  

  0 -1 0 0 0 0 0 0 0  iy  

  1 xj 0 x j
2  0 0 x j

3  0 0   wj  

M=  0 0 1 0 xj 0 0 x j
2  0  jx (7.20) 

  0 -1 0 -2xj 0 0  3 2x j  0 0   jy  

  1 xk yk xk
2  xk yk yk

2  xk
3  x y x yk k k k

2 2  yk
3    wk  

  0 0 1 0 xk 2yk 0 x x yk k k
2 2  3 2yk    kx  

  0 -1 0 -2xk -yk 0  3 2xk   2 2x y yk k k  0   ky  

 We can present the solution of equation (7.19) as follows: 
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a M u 1 'e , (7.21) 

where M-1 is the inverse matrix of M. The discovery of M-1 is possible when det M  0 (comp. 

Appendix 1) which is not always the case in our problem because  

 det M   x y x y xj k k k j
5 5 2  (7.22) 

 It means that in cases when the node k of the element is on the line described by 

equation y x xj  2 , then the matrix M is singular. Thus, the problem is solved by changing 

the local coordinate system. 

 Now we calculate a strain vector determined by equation (7.3)  

 = -z w(x,y) = -z  T M u B M u   1 1' 'e ez , (7.23) 

where B= T is a rectangular matrix of which components are equal to: 
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Comparising equation (7.23) with the definition of the geometric matrix B e described by 

equations Błąd! Nie można odnaleźć źródła odwołania.) and (1.38) we obtain 

B B Me z   1 . (7.25) 

Hence we can make use of the definition of the stiffness matrix contained in equation (1.50): 
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(7.26) 

 After denoting the integration existing in the above equation by K   and applying the 

definition of plate stiffness we have 

 K M K M'e D   1 1T
. (7.27) 

After calculating the matrix multiplication inside the integration in equation (7.26), we have 
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 While calculating the integration of functions exiting in equation (7.28), the following 

relations are helpful: 
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 Matrix (7.26) is determined in the local coordinate system. We have to transform it to 

the global coordinate system in accordance with relation (1.53): 
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(7.30) 

where Ri, Rj, Rk are the transformation matrices of nodes. If we use the same coordinate 

systems for all the nodes (it has been done so in this chapter), then we can use only one 

transformation matrix: Rj = Ri, Rk = Ri, 
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(7.31) 

where c  cos , s  sin  and  is the angle between the X axis of the global system and the 

x axis of the local system (Fig.7.4). Value 1 in the first row of the matrix Ri is the consequence 

of a fact that axes Z and z are parallel. 

 

Fig.7.4 

 The triangular element of which the matrix stiffness has been obtained has a 

convenient feature. Namely, it allows to discrete plates of any shape without any difficulty. 

This element joined with a 2D triangular element can be used as a shell element (comp. [12]).  

 Elements of any other shapes (rectangular or quadrangular) are presented in books 

written by Bathe [1], Zienkiewicz [19],[20], Rao [13] or Rakowski [12]. 
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