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APPENDIX 1 

MATRIX ALGEBRA 
 

 In this appendix we give the most important definitions of matrix algebra and we 

elaborate some functions and transformations of matrices which are most helpful in numerical 

applications and particularly in the finite element method. 

A.1.1. DEFINITIONS 

 Scalar - value determined only by its magnitude which can be expressed by a real number. 

The typical scalar values are mass, temperature, time, length, etc. We will denote the scalars 

by letters written in italic font. 

 Vector - value determined by its modulus, direction and sense. The examples of vectors are 

force, displacement, velocity and rotation. We will denote the vectors by small letters 

written in bold font. 

 Matrix- table containing most often scalars but it can also contain vectors or other matrices. 

Elements of a matrix are called components. It is a very convenient form of presentation of 

large quantities of data which we deal with in numerical methods. One of a matrix notation 

which we apply in this book looks as follows: 

 A  



















A

A A A
A A A

A A A

ij

n

n

m m mn

11 12 1

21 22 2

1 2




   


. 

We will denote quadratic matrices (they have the same number of columns and rows) and 

rectangular matrices (they have a different number of columns and rows) by capital letters 

written in bold font. 

 Column matrix - will also be called a vector and it contains only one column. We will 

denote it just as vectors. 

 Identity matrix - quadratic matrix components of which are equal to zero except for those 

lying on the main diagonal (diagonal elements). Diagonal elements are equal to 1. We will 

mark the identity matrix by the capital letter I and in some cases by an index pointing 

dimensions of a matrix: 
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I4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















. 

The components of the identity matrix can be written with the help of Kronecker’s delta 

 I   ij  where  ii  1 ,  ij  0 , when i j . 

 Triangular matrix - matrix containing either components equal to zero (L-triangular lower 

matrix) lying over the main diagonal or components also equal to zero (U- triangular upper 

matrix) lying below the main diagonal  

 L  



















L

L
L L
L L L
L L L L

ij

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0
, 

 U  



















U

U U U U
U U U

U U
U

ij

11 12 13 14

22 23 24

33 34

44

0
0 0
0 0 0

. 

 Band matrix - matrix containing components which are different from zero only when they 

are close to the main diagonal 

Abanded Band
width

0

0p

p - width of half of the band  
After suitable grouping of equilibrium equations, stiffness matrices are band matrices in the 

finite element method. 

 Symmetric matrix - matrix with components satisfying the equation: 

   A sym  A Aij ji  

Stiffness matrices are symmetric matrices in the finite element method. 

 Transpose matrix - matrix in which we group components so that columns become rows: 
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   B A  T B Aij ji . 

Transpose matrices are denoted by the normal capital letter T which is written as an upper 

index. 

 The main diagonal of a matrix is the diagonal which passes from the component A11 along 

other components having equal indices of a column and a row; that is A22 ... Aii ... Ann. 

A 



















A A A
A A A

A A A

n

n

n n nn

11 12 1

21 22 2

1 2




  


 Main diagonal

 

A.1.2. MATRIX ADDITION AND SUBTRACTION 

 The operation of matrix addition is defined as follows: 

C A B    C A Bij ij ij , 

which means that the components of the matrix C resulting from the addition of matrices A 

and B are sums of suitable terms of matrices A and B. The matrix addition is possible only if 

both matrices (A and B) have the same number of columns and rows. The addition is a 

commutative operation: 

C A B B A    . 

Similarly, we define matrix subtraction: 

D A B    D A Bij ij ij . 

Example No 1. 

A  


















1 3 8 2
2 4 1 2
1 0 3 4

, B 

















0 2 1 0
3 2 5 1
0 2 1 3

, 

       
       
       

C A B  
   
    

    
















 



















1 0 3 2 8 1 2 0
2 3 4 2 1 5 2 1
1 0 0 2 3 1 4 3

1 5 9 2
5 6 6 1
1 2 4 7

, 

       
       
       

D A B  
   
    

    
















   

 

















1 0 3 2 8 1 2 0
2 3 4 2 1 5 2 1
1 0 0 2 3 1 4 3

1 1 7 2
1 2 4 3
1 2 2 1

. 
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A.1.3. MULTIPLICATION OF A MATRIX BY A SCALAR (SCALING OF A 

MATRIX) 

 Scaling a matrix is the name of an operation carried on its components and defined as 

follows: 

E A   E Aij ij , 

which means that components of the matrix E resulting from the multiplication of the matrix A 

by the scalar  are products of components of the matrix A and the value . 

 

Example No 2. 

A  


















1 3 8 2
2 4 1 2
1 0 3 4

,  =3.5, 

E A  


















35
35 105 28 0 7 0
7 0 14 0 35 7 0
35 0 0 10 5 14 0

.
. . . .
. . . .
. . . .

. 

The matrix E which is the result of scaling has the same number of columns and rows just as 

the matrix A does. 

A.1.4. MATRIX MULTIPLICATION 

 Let C be the result of multiplication of matrices A and B: 

C A B  , 

then components of the matrix C are results of the multiplication of rows of the matrix A by 

columns of the matrix B which can be written as follows: 

C A Bij ik kj
k

n





1
, 

where n is the number of columns of the matrix A. As it is seen the multiplication of the 

matrices A and B is possible to perform if the number of columns of the matrix A is equal to 

the number of rows of the matrix B. The matrix C which is the result of multiplication has the 

number of rows equal to the number of rows of the matrix A and the number of columns equal 

to the number of columns of the matrix B. 
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  B B B B
B B B B

B B B B

j m

j m

n n nj nm

11 12 1 1

21 22 2 2

1 2




    






















 

C A B    A A A
A A A
A A A

n

n

i i in

11 12 1

21 22 2

1 2





















 

 

                         

                            Cij 

 

Example No 3. 

A  


















1 3 8 2
2 4 1 2
1 0 3 4

, B 

















0 2 1 0
3 2 5 1
0 2 1 3

, 

C AB T  

     0 3 0 

     2 2 2 

     1 5 1 

ABT       0 1 3 

 1 3 8 2 10+32+81+20= 

=14 

13+32+85+21= 

=51 

10+32+81+23= 

=20 

 2 4 1 -2 20+42+11-2 0= 

=9 

23+42+15-21= 

=17 

20+42+11-23= 

=3 

 -1 0 3 4 -10+02+31+40= 

=3 

-13+02+35+41= 

=16 

-10+02+31+43= 

=15 

 

C 

















14 51 20
9 17 3
3 16 15

. 

 

Example No 4. 

An interesting result is obtained multiplying a row matrix by a column matrix: 
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a 



















1
2
3
4

, b 





















3
2
1
2

, 

c a b T , 

 c 





















         1 2 3 4

3
2
1
2

1 3 2 2 3 1 4 2 2( ( )) , 

The matrix C with dimensions 1x1 (so it is a scalar) is the result of this operation.  

 Thus, the vector multiplication a bT  is called scalar multiplication. 

 The matrix multiplication is not in general the commutative operation which means 

A B B A   , 

even if it can be done (it is possible only for quadratic matrices). 

 We will also give some more definitions concerning matrix multiplication which are 

worth memorising: 

   A B C A B C     , 

 A B C A B A C      , 

A I I A A    , 

 A B B A  T T T . 

A.1.5. THE DETERMINANT OF A MATRIX 

 A determinant is the scalar function of a quadratic matrix which we write as follows: 

det A  Aij . 

Calculation of the value of a determinant depends on the summation of products obtained from 

all permutations of components of the matrix A: 

 det , , ,A   1 1 2 31 2 3

I
n

p

p

n
A A A A    , 

where p denotes all permutations, Ip - number of inversions in the permutations. 

 The value of a determinant can also be calculated by using Laplace’s expansion with 

regard to terms of any rows or columns: 
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det A 

 A Amk mk
k

n

1
- development of the row m  1 m n  

or 

det A 

 A Akm km
k

n

1
- development of the column m  1 m n . 

Aij  here signifies the algebraic complement of the element Aij of the matrix: 

 A Aij
i j

ij   1 , 

where Aij
  is the minor of the matrix  A* * Aij  that is to say the determinant of a matrix 

which is obtained by removing the row i and the column j from the matrix A.  

 Laplace’s development should be processed as long as we obtain matrices 2x2 whose 

determinants can be calculated directly: 

det A   
A A
A A A A A A11 12

21 22
11 22 12 21 . 

 The way of calculating determinants of the matrix 3x3 (Sarrus’s rule) is also known as 

det B  
B B B
B B B
B B B

11 12 13

21 22 23

31 32 33

 

  B B B B B B B B B11 22 33 21 32 13 31 12 23   B B B B B B B B B31 22 13 21 12 33 11 32 23 . 

Yet it should not be applied to matrices with a greater number of rows and columns. 

 It is worth memorising the useful relation: 

 det det detA B A B  , 

which helps us to determine determinants of products of matrices effectively. 

 If the determinant of a matrix is equal to zero, then such a matrix is called a singular 

matrix. 

A.1.6. INVERSE OF A MATRIX 

 A matrix satisfying the condition: 

A A I  1  

is called the inverse of the matrix A. 

 Components of an inverse matrix can be determined by scaling a transpose matrix of 

algebraic complements: 
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 
  

A
A

A

 

  


1 1 1 1

det
 T T

T

A
A

A

Aij
ij

i j
ij

ij

, 

where  A  Aij  is the matrix of algebraic complements:  A  





 1
i j

ijA , 

 Aij
  is the minor, that is, the determinant of a matrix which is formed by removing the row i 

and the column j from the matrix A. 

 It is easy to note that it is impossible to find a matrix which would be the 'inverse' of a 

singular matrix because it requires dividing by zero. 

 The matrix AT  is called the joined matrix of the matrix A. The joined matrix can be 

formed for any matrix (even singular). 

 

Example No 5. 

We look for the 'inverse' of the matrix: 

A 

















9 6 2
1 9 3
7 5 3

. 

First, we calculate the determinant in order to check if the inverse operation is possible. We 

calculate the determinant of the matrix A making use of Sarrus’s rule: 

           det A                   9 9 3 1 5 2 7 6 3 7 9 2 1 6 3 9 5 3 100 . 

We calculate sequencing the algebraic complements: 

 A11
1 11

9 3
5 3

12   ,  A12
1 21

1 3
7 3

18   , 

 A13
1 31

1 9
7 5

58    ,  A21
2 11

6 2
5 3

8    , 

 A22
2 21

9 2
7 3

13   ,  A23
2 31

9 6
7 5

3    , 

 A31
3 11

6 2
9 3

0   ,  A32
3 21

9 2
1 3

25    , 

 A33
3 31

9 6
1 9

75   , 

from which we have 



 139 

A  



 

















1
012 0 08 0 0
018 013 0 25
0 58 0 03 0 75

. . .

. . .
. . .

. 

A.1.7. DECOMPOSITION OF A MATRIX INTO TRIANGULAR MATRICES 

 The nonsigular matrix A can be broken down into the product of triangular matrices: 

A L U  , 

where L is the lower triangular matrix and U is the upper triangular matrix. Such a process is 

called either matrix triangulation or decomposition or factorisation. 

 The decomposition method was originated by M.H.Doolittle (1878) and later it was 

reconfirmed by findings of several scientists like Cholesky (ok.1916), A.C.Aitken (1932), 

T.Banachewicz (1938) and P.D.Crout (1941). The Cholesky method was described by Benoit 

in 1924. 

 The components of the triangular matrix L and U can be calculated using the 

procedures proposed by Crout or Banachewicz: 

Lii  1 , i = 1 ... n, 

U A L Uij ij ik kj
k

i

 





1

1

, j = i ... n, 

L
U

A L Uij
jj

ij ik kj
k

j

 














1

1

1

, i = j ... n. 

 Calculation of components is done alternatively for rows of the matrix U and columns 

of the matrix L (the Crout method) or in succession the row of the matrix U and then the row 

of the matrix L (the Banachewicz method [15]). 

 Decomposition into triangular matrices is very important in practice because it is 

applied as the effective method of solving sets of linear equations. 

 The solution of the set of equations 

A x y  

can be obtained in two stages. At the first stage we apply substitutions A L U and U x z  

which simplify the set of equations to the form: 

 L U x y L z y    

which simplifies solving 
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z
y
L1

1

11
 , 

 z y L z
L2 2 21 1

22

1
  , etc., 

z y L z
Li i ik k

k

i

ii
 















1

1 1
. 

The applied procedure is called here forward elimination because we calculate consecutively 

the unknowns z1, z2 ... zi ... zn. 

 The second stage depends on the determination of  unknown values from equations 

U x z , 

which is done similarly to the previously used method but we have applied back substitution 

starting from the last component: 

x
z
Un

nn

nn
 , 

 x z U x
Un n n n n

n n
  

 
 1 1 1

1 1

1
, etc., 

x z U x
Li i ik k

k i

n

ii
 










 


1

1
. 

 Time to solve a set of equations by this method is proportional to n3/3, where n is the 

number of equations. The number TD = n3/3 is called the cost of Doolittle’s method and is the 

estimated number of multiplication and division operations which should be done in order to 

solve a set of equations. 

A.1.8. TRIANGULATION OF SYMMETRIC MATRICES 

 If the quadratic matrix is symmetric (obviously not singular) decomposition given in 

the previous section can be simplified even more noting that: 

A L L T  or A U U T . 

The algorithm of the decomposition of the symmetric matrix A into triangular matrices was 

published for the first time by Cholesky (in 1916) and then independently by Banachewicz (in 

1938). This method is usually called the Cholesky method. In Poland the name the 

Banachewicz-Cholesky method is used in scientific publications. 

 Components of a triangular lower matrix obtained by this method are equal to: 
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Lij  0  for  j > i, 

L A Lii ii ik
k

i

 




 2

1

1

, 

L A L L
Lij ij ik jk

k

j

jj
 















1

1 1
 for j < i. 

 In the above equations defining the components lying on the main diagonal of the 

matrix L a square root is applied. The term under the root can certainly be negative and then 

components of the matrix L are complex. It can be proved [5] that for positively defined 

symmetric matrices the components Lii are always real numbers. 

 Time of the decomposition of a symmetric matrix obtained by the Banachewicz-

Cholesky method is proportional to TB-CH = n3/6. 

 

Example No 6. 

 Using the Banachewicz-Cholesky method, find the triangular lower matrix L for 

which A L L T  

A 




 



















10 1 2 1
1 15 2 3
2 2 13 4
1 3 4 12

. 

We determine particular components of the triangular lower matrix L which are different from 

zero: 

L A11 11 10 316228   . , 

L A
L21 21

11

1 1
10

0 32623   . , 

L A L22 22 12
2

2

15
1
10

386005   






 . , 

L A
L31 31

11

1 2
10

0 63246   . , 

 L A L L
L32 32 31 21

22

1
2

2
10

1
10

1
14 9

0 46631   







.

. , 
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 L A L L33 33 31
2

32
2

2 2

13
2
10

18
14 9

351888    





















 

.
.

. , 

L A
L41 41

11

1
0 31623   . , 

 L A L L
L42 42 41 21

22

1
0 75129    . , 

  L A L L L L
L43 43 41 31 42 32

33

1
129312    . , 

 L A L L L44 44 41
2

42
2

43
2 310860     . . 

 

L 

 



















316228 0 0 0
0 31623 386005 0 0
0 63246 0 46631 351888 0
0 31623 0 75129 129312 310860

.

. .

. . .
. . . .

 

A.1.9. ORTHOGONAL MATRICES 

 There is a group of matrices having the property: 

A A 1 T  

which enormously simplifies solving a set of equations. We say that such matrices are 

orthogonal matrices. This property is shown by the transformation matrices for vectors: 

R 










c s
s c ,  

where c  cos , s  sin , and  is a rotation angle. 

 We check the orthogonality of this matrix by the equation R R I T  : 

c s
s c

c s
s c

c s cs sc
sc cs c s









  









 

 
 









 











2 2

2 2

1 0
0 1

. 

We use this property of the transformation matrix in some chapters of this book. 
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