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APPENDIX 3 

STIFFNESS OF TORSION FRAME ELEMENTS 
 

 The problem of torsion bars is very important in practice. The determination of the 

bar stiffness in the process of torsion is necessary to determine components of stiffness indices 

of 3D frame elements (comp. Chapter V). The problem of determination of stress and stiffness  

of a bar with a circular symmetric cross section (Fig.A3.1) was solved by Coulomb at the end 

of 18th century [17]. 

 

 
Fig.A3.1 

A.  A circular cross section 

 In case of circular cross sections their torsion stiffness is equal to the polar moment of 

inertia and: 
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 Thus, the dependence between the torsion moment Ms and a unit angle of a cross 

section rotation is equal to 

Ms = CG. 

The problem of determination of stiffness and stress in a torsion bar with any cross section was 

solved by de Saint-Venant in the middle of 19th century. He assumed that non-circular cross 

sections undergo deplanation. The determination of a warping function requires solving a 

harmonic differential equation: 
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Many ways of solving this problem for different cross sections can be found in the book 

written by P.S.Timoshenko and J.N.Goodier [17] and another one written by M.T.Huber [6]. 

In this Appendix we give ready made solutions for a few different from the technical point of 

view cross sections. 

B.  An elliptic cross section 

This problem was solved by de Saint-Venant in 1855. 
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where a and b are half axes of an ellipse. 

 

 
Fig.A3.2 

C. An equilateral triangle 

This problem was solved by de Saint-Venanta in 1855. 

 

 
Fig.A3.3 
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D. A rectangular cross section 

That problem was solved by de Saint-Venanta in 1856. 
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Fig.A3.4 
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Proper approximation can be obtained by using the formula: 
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giving the value which differs from the exact value not more than by 0.55% (at 
a
b
 0 875. ). 

 

 

 

 

 

Fig.A3.5 

 The graph shows the dependence k
a
b





  which can be used for approximate 

determination of stiffness of a rectangular cross section (Fig.A3.5). 

E.  A circular segment 
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This problem was solved by de Saint-Venanta in 1878. 

 
Fig.A3.6 
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where  k   is the coefficient calculated on the basis of the equation: 
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We give the values of this coefficient for a few values of the angle  in the table below: 

 /4 /3 /2 2/3  3/2 5/3 2 

k 0.0181 0.0349 0.0825 0.148 0.296 0.572 0.672 0.878 

 

F.  An isosceles right-angled triangle 

The above problem was solved by Galerkin in 1919. 

 
Fig.A3.7 
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G. A regular hexagon 
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Fig.A3.8 
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H. A thin-walled pipe with any cross section 

 
Fig.A3.9 
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where Ao is the surface of a figure limited by a line dividing the thickness of a pipe wall into 

halves. Integration should be done along the circuit S of this figure. 

 

 

I. A thin-walled pipe cut along generating line 
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Fig.A3.10 
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It is interesting to notice that stiffness does not depend on the shape of a cross section but it 

depends on its thickness and circuit S. 

J. Cross sections composed of thin-walled rectangles 

 
Fig.A3.11 
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Comparing coefficient 
1
3

 in the above formula with the graph shown in Fig.A3.5, we note that 

stiffness is always overevaluated. For a cross section composed of rectangles with the same 

thickness more exact results are obtained by using the formula for rectangles (example D) 

where we substitute g for a and the length of a circuit of the middle line of a cross section is 

substituted for 
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K. A thick-walled pipe cut along generating line 

 
Fig.A3.12 
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L. Other cross sections with crowned contour 

 On the basis of many exact solutions de Saint-Venant proposed to determine the 

torsion stiffness from the approximate formula: 
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where A is the surface of a cross section and Jo is the center moment of inertia. 

The above formula is exact for an ellipse. Generalising it, we write 
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where  is the coefficient depending on the shape of a cross section. The table below in which 

you can find several different values of the coefficient  can be helpful as a reference. 

Section Circle, 
ellipse 

Equilateral  
triangle 

Rectangle Circular 
segment 

Isosceles 
right-  

Regular 
hexagon 

   1:1 2:3 1:2 1:4 =/2 = angled 
triangle 

 

Example A, B C D D D D E E F G 

 4= 
39.478 

45 42.674 42.438 41.976 40.221 42.022 40.935 43.088 40.603 

 


