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Introduction 

This book deals with the use of the finite element method (FEM is an 

abbreviation for the Finite Elements Method or FEA for Finite Elements Analysis) to 

solve linear problems of solid mechanics. We are particularly interested in static 

analysis of bar structures (trusses, frames), surface structures (two-dimensional plates, 

three-dimensional plates, shells); elements that are very often used in engineering 

structures. Obviously there are many books which discuss these problems, for example, 

the books written by the creators of FEM including Bathe (1996), Zienkiewicz (1972, 

1994). In our opinion there are not enough Polish books that introduce difficult FEM 

problems in a simple way so that an understanding of its theoretical bases is possible for 

people who do not deal with structure mechanics on a daily basis. An understanding of 

the FEM basis is necessary for a contemporary designer who has to use sets of computer 

programmes in the design process and those calculated modules are just based on the 

finite element method. The example of a book which can be treated as a manual is the 

book by Rakowski and Kacprzyk (1993). This book requires some theoretical 

knowledge on the part of a reader. The same refers to the collective book edited by 

Kleiber (1995) which introduces some other computer methods used in mechanics. But 

the problems presented in our book are helpful to understand FEM and besides it 

contains the examples of exercises which can be solved by a reader without the use of a 

computer. A good example of a FEM handbook present on the United Kingdom market 

is the book written by Ross (1990). 

Hence, we have decided to write a manual for engineers which is as simple as 

possible (but without trivialising problems) in order to simplify the study and 

understanding of FEM. The content of this book is based on lectures which have been 

given by one of the co-authors (J.P.) at the Faculty of Civil Engineering of the 

Technical University of Lublin since 1990. However, the content of this book has been 

greatly broadened and deepened in comparison with the lectures. We have also 

elaborated on many examples simplifying the understanding of detailed problems and 

algorithms of FEM. 

In order to study this book, the reader should have basic knowledge of akin 

sciences, in particular those concerning strength of materials and the theory of elasticity. 

We assume that the reader is familiar with terms such as stress, strain, constitutive 

relations (particularly the generalised Hook’s law). References given at the end of the 
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book elaborate on these topics in detail. Special attention should be paid to the books on 

the theory of elasticity written by Fung (1965), Timoshenko (1966) and the book on the 

strength of materials written by Dyląg et al. (1999), Gawęcki (1998), Jastrzębski et al. 

(1985). 

The study of FEM problems requires the use of matrix algebra and we assume 

that the reader knows the basis of calculus. At the end of the book, in Appendix 1, one 

can find a short review of the most important information concerning matrix algebra 

necessary for reading this book. 

Knowledge of numerical methods is not essential in order to understand FEM 

because it is linked with computer implementation of algorithms. On the other hand, 

this information helps when using ready-made sets applying to FEM. Since numerical 

methods are not always included in the programme of the university course in 

mathematics, we provide a review of methods of storage of stiffness matrices and of 

solving large sets of linear equations in Appendix. We also encourage the reader to be 

familiar with the book written by Georg and Liu (1981) because it is particularly 

devoted to these methods.  

I would like to thank prof. Andrzej Garstecki and dr. Witold Kąkol from Poznań 

University of Technology, who have reviewed the manuscript. We would also like to 

thank dr. Steven Hardy from Wales University at Swansea, who has read the book to 

identify errors and improve the clarity of the material. 

 

JP 
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Notation 

a b u, , - column matrix  vectors 

A B K, ,  two-dimensional matrix 

u K' , ' , ux vectors, matrices and scalars in the local coordinate system of an element 

u K, , uX  vectors, matrices and scalars in the global coordinate system 

x, y, z  axes of the local coordinate system of an element 

X, Y, Z  axes of the global coordinate system 

qi   lower index at vectors or matrices denotes the node number i 

q
e   upper index at vectors or matrices denotes the element number e 

zyxzyx uuu  ,,,,,   components of the local vector u in the local coordinate system 

ZYXZYX uuu  ,,,,,   components of the global vector u in the global coordinate system 
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
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  components of the vector are usually denoted by small letters 

just as a vector except for the nodal forces vector which is denoted by capital letters in 

accordance with tradition. 

 

Element numbers are situated closer 

tothe first node. 

det (A) stands for the determinant of the matrix A 

A
T
 transpose of the matrix A which means that if 

T
AB  , then B Aij ji  

N N  - number of nodes in a structure 

N E  - number of elements in a structure 
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N D  - number of degrees of freedom of one node 

N De  - number of degrees of freedom of an element 

N K  - number of degrees of freedom of the whole structure 

E - Young’s modulus (modulus of elasticity) 

G - Kirchhoff’s modulus (modulus of  elasticity in shear) 

 - Poisson’s ratio 

L - length of an element 

V - volume of an element 

A - cross-section of a bar or the surface area of an element 

Jz - inertial moment with regard to the z axis 

C - torsional resistance characteristics 
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Introduction to the Finite Element Method 

In this chapter we will discuss basic concepts and algorithms of the finite 

element method. We will also include necessary information regarding solid mechanics. 

As we have written in the Introduction, we assume that the reader knows basic issues of 

mechanics of materials and the theory of elasticity, therefore the information here will 

be only a short survey and an introduction to the matrix notation. Suitable references are 

given at the end of this book, in particular books written by Dylag et al. (1999), 

Fung (1965),Jastrzebski et al. (1985), Timoshenko and Goodier (1962). 

1.1. The origin and basic concepts of the Finite Element 

Method 

We can trace the beginnings of the finite element method to the '20s and '30s of 

the 20
th

 century when authors like G.B.Maney and H.Cross in the USA and A.Ostenfeld 

in the Netherlands making use of findings presented in papers written by J. C. Maxwell, 

A. Castiliano and O. Mohr proposing a new method for solving structural mechanics 

problems which is now known as the displacement method. 

In the middle of the 20
th

 century J.Argyris, P.C.Pattan, S.Kelsey, M.Turner, 

R.Clough et al. accomplished the generalisation of this method. They did it on the basis 

of papers written by R.Couranta. In the '60s and '70s the finite element method was 

improved thanks to the publications by O.C.Zienkiewicz, Y.K.Cheung and R.L.Taylor. 

Thus it has become a contemporary tool used for solving issues of solid mechanics, 

temperature flows, fluid mechanics, electromagnetic fields and other issues. 

The basic idea of the finite element method (FEM) is to search for a solution to a 

complex problem (which is written in the form of a differential equation) by replacing it 

with a simpler and similar one. It leads to the discovery of an approximate solution, the 

precision of which depends on the assumed approximation methods. In mechanics 

problems, a solution generally consists of determining displacements, strains and 

stresses in a continuum. These issues appear in statics and dynamics of frame structures, 

plates, shells and solids. The equilibrium of a body is usually written in the form of a 

differential equation (or a set of differential equations) which has to be realised within 

the body and its boundary conditions which should be realised on its surface. It is often 

very difficult or even impossible to find exact solutions. The finite element method 
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proposes the following way of determining an approximate solution by 

Zienkiewicz (1972): 

 The continuum is separated by imaginary lines or surfaces into a number of finite 

elements. 

 The elements are assumed to be interconnected at a discrete number of nodal points 

situated on their boundaries. The displacements of these nodal points will be the 

basic unknown parameters of the problem. 

 A set of functions is chosen to define uniquely the state of displacement within each 

finite element in terms of its nodal displacements. The displacement functions now 

define uniquely the state of strain within an element in terms of the nodal 

displacements. These strains, together with any initial strains and the constitutive 

properties of the material, will define the state of stress throughout the element and, 

hence, also on its boundaries. 

 Forces concentrated at the nodes (nodal forces) which depend on nodal 

displacements are determined. The relationship between nodal forces and 

displacements is described by the element stiffness matrix. 

 A set of equilibrium equations is written for all nodes, hence the problem becomes 

one of solving a set of algebraical equations which are often linear. Solving such a 

set of equations with suitable boundary conditions enables the strains and stresses 

within elements to be calculated. 

The approximation of the solution requires solving many problems of which the 

selection of shape functions and discrete systems seem to be the most important ones. 

The person choosing a structure model (elastic, plastic, frame, plate etc.) and a discrete 

method should have considerable experience. In the following chapters we will present 

necessary information to simplify the work of less experienced users of the finite 

element method. 

1.2. Basic assumptions and theorems of solid mechanics 

Here we will present a few basic assumptions and theorems of mechanics which 

will be used in the subsequent chapters of this book. 
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1.2.1. Assumptions regarding the linear model of a structure 

In this chapter and some subsequent ones we will be dealing with linear 

problems of mechanics. This means that the process of structural deformation can be 

written by linear differential equations. It involves the following consequences: 

 Displacements of structure points which appear during deformation are small. 

Linear displacements are considerably smaller than the characteristic dimension of a 

structure (for example, the deflection of a beam is a few hundred times smaller than 

its length) and angles of rotation are considerably smaller than one (for example, a 

nodal angle of rotation is smaller than 0.01 rad). 

 Strains are small. It enables the relationship between strains and displacements to be 

expressed with the help of linear equations. 

 The material is linear elastic which means that it satisfies Hook’s law. 

It may seem that such limits which are put on both geometry of a structure and 

material characteristics strongly restrict the application of the model. In effect these 

limits are realised for many structures (they can refer to most of them), so the range of 

usage of the model is very wide. The reader should know this when he proceeds with 

the description of any real problem in terms of mechanics equations. 

1.2.2. Stresses and strains 

We will denote components of the stress tensor traditionally (as it occurs in most 

books on the finite element method). This means that components of direct stress will 

be denoted by letters σx,σy,σz and components of shear stress by τxy,τxz,τyz. Because of the 

symmetry of the stress tensor (Fung (1965), Timoshenko and Goodier (1962)), we will 

use only six components which when presented in a column matrix form the stress 

vector: 




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

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
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




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z
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











  (1) 

Denoting the components of the strain tensor traditionally we assume the 

following definitions: 
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whereεx, εy, εzare the components of direct strain (unit elongation) and  γxy, γxz, γyz, the 

components of shear strain (they are the angles of the non-dilatation strain), ux, uy, uz are 

the components of the displacement vector in the Cartesian coordinate system. 

We write the components of strain in the form of a column matrix - the strain 

vector:  
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
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
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
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
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ε  (3) 

We simplify the calculation of the internal work if we take the components of 

the strain vector γij (the angles of the volumetric strain) instead of usual tensor 

definitions: 

 
VV

VV ddW εDεεσ
TT  

(4) 

where V  means the volume of a body. 

1.2.3. Constitutive equations 

As we have noted in our introductory assumptions, the relationship between the 

components of the stress tensor and the components of the strain tensor (that is, between 

σ and ε in our notation) is expressed by the linear equation: 

σ= D·ε (5) 

ε= D
-1

·σ (6) 

where D is the square matrix with dimensions 6x6 containing the material constants: 
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
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




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where λ and μ are the Lamé constants. 

Since some other material constants like Young’s modulus  E and Poisson’s 

ratio ν are more often used, in practice we present the relationships between them and 

the Lamé constants by the following formulae: 

  




21+1 


E
,     

 


+12

E
  (8) 

The Lamé constant μ is noted by the letter G and is called Kirchhoff’s (or shear) 

modulus. 

The inverse matrix D
-1

 with the material constants has an unusually simple 

structure which is best shown by means of the constants E, ν: 




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
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



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








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
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
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



)1(200000

0)1(20000

00)1(2000

0001
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











E
D  (9) 

It should be noted that matrix D is symmetrical which means that the 

dependence D = D
T
 occurs. This dependence will often be used in conversions. 

1.2.4. Plane stress 

In two-dimensional problems of thin plates, the following simplification of the 

assumption is: 

,0,0,0  zyzxz   (10) 

which leads to the plane stress criterion. 

If we put Eqn. (10) into Eqn. (5) taking into consideration data from Eqn. (7) we 

obtain: 
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In plane stress, the dimensions of the stress and strain vectors and the matrix of 

the material constants are reduced by half and thus: 
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
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
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1.2.5. Plane strain 

In problems regarding deformations of massive buildings, the plane strain 

criterion is often found and it is expressed by the equations: 

0,0,0  zyzxz   (15) 

When we insert the above equations into Eqn. (6) taking also into consideration 

Eqn. (9) we get the following relations: 

 
yxz   ,   0zx ,   0zy  (16) 

This is called the plane strain. 

After taking into consideration the above Eqn. (15) and (16), we can notice that 

the relationship between the reduced stress and strain vectors Eqn. (12) leads to the 

following matrix of elastic constants: 
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E
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1.2.6. Equilibrium equations 

The condition of equilibrium for a fixed body is satisfied when the following six 

equations called equilibrium equations take place: 

0P 


n

i

i

1

, 0M 


n

i

i

1

 (19) 

which can be written as: 

0
1



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


n
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YiP ;      0
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
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
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i

XiM ;     0
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

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i

YiM ;     0
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


n

i

ZiM  

(20) 

where PXi, PYi, PZi are the components of the force Pi and MXi, MYi, MZi are the moments 

of this force in relation to the axes of a coordinate system and n is the number of forces. 

When a set of forces is contained in, for example, the plane XY, then equilibrium 

Eqn. (20) are reduced to the following three equations: 

0
1




n

i

XiP ;     0
1




n

i

YiP ;     0
1




n
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ZiM  (21) 

1.2.7. The principle of virtual work 

Equilibrium Eqn. (19) define conditions for a set of forces acting on a rigid 

body. In the case of an elastic body which deforms due to forces acting on it we have to 

determine conditions for external forces, as well. This can be done by using the 

principle of virtual work which says that the external work due to virtual displacements 

is equivalent to the increase of the potential energy of the internal forces: 

E
n

i

ii 
1

uP  (22) 
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where 
iu  is the vector of the virtual displacement at the point i, the dot means the scalar 

product of the vector of the force Pi and the vector of the virtual displacement 
iu , Eσ - 

is the potential energy of internal forces: 

 
VV

VV ddE σεεσ
TT


 

(23) 

In Eqn. (23) ε  denotes the strain vector which results from the virtual 

displacement u . 

The virtual displacement must satisfy the following conditions from 

Nowacki (1976): 

 it should be independent of forces acting on a solid, 

 it should be consistent with the constraints so that it is kinematically 

allowable, 

 it should be independent of time. 

Eqn. (22) will be used many times in different forms in the subsequent chapters 

of this book. 

1.2.8. Clapeyron’s theorem 

Changing virtual displacements into the real ones in Eqn. (22) and (23) we 

obtain: 




n

i

ii

1

uP  
VV

VV dd σεεσ
TT  (24) 

The above equation expresses the content of Clapeyron’s theorem which says 

that for the elastic body in equilibrium the work of external forces is equal to the 

potential energy of internal forces (elastic energy). Moreover, the elastic body has to 

satisfy the conditions described by Gawęcki (1998) and Jastrzębski et al. (1985): 

 material of which the body is composed reacts according to Hook’s law, 

 body does not possess the boundary conditions which depend on the 

deformation of a structure, 

 body temperature is constant 

 there are no initial stresses and strains. 

Bodies which satisfy these conditions are called Clapeyron’s bodies. 
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1.2.9. The Betti reciprocal theorem of work and the Maxwell 

reciprocal theorem of displacements. 

Let us insert the constitutive relation into Eqn. (22) expressing the principle of 

virtual work Eqn. (5). Thus we obtain: 




n

i

ii

1

uP    
VVV

VVV ddd εDεεDεεσ
TTT  (25) 

In the above equations we have made use of the symmetry of the matrix of 

elastic constants D=D
T
. 

Below we will apply the principle of virtual work in a different way, namely we 

attach virtual loads (a set of forces jP ) acting at the same nodes as the actual loads, but 

of a different value and direction. The work done by these forces for the actual 

displacement is equal to: 




n

j

jj

1

uP    
VVV

VVV ddd εDεεDεεσ
TTT  (26) 

The right hand sides of Eqn.(25) and (26) are identical which can be simply 

checked by direct calculations. Hence, we obtain the equation: 





n

i

ii

n

i

ii

11

uPuP  (27) 

which expresses the reciprocal theorem of work formulated by E.Betti in the nineteenth 

century. 

This theorem can be written as follows (Nowacki (1976)): 

The set of forces Pi does the same work at the displacements induced by the set 

of forces Pj, as the set of forces Pj does at displacements induced by forces Pi. 

If we bring down both sets of forces to single unit forces acting at the point a, 

we obtain: 

aaaa u1u1   (28) 

This relationship is called the reciprocal theorem of displacements and was 

formulated by J.C.Maxwell in 1864. 
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1.3. Algorithm of the Finite Element Method 

The finite element method as a computer method is characterised by a strictly 

defined and simple algorithm. We will show the most important stages of this 

algorithm. Some of them will be discussed in detail in further parts of this book. 

A. Discretization 

At this stage, the division of a structure into finite elements is done. In the case 

of frameworks it is often obvious since every straight segment of a bar becomes an 

element. In the case of 2D surfaces, we divide their area into triangular and/or 

quadrangular elements and in the case of solids we divide them into tetrahedral and 

hexahedronal (brick) elements. 

At this stage, we decide about points of elements contacts, give coordinates of 

the nodes and state the manner of connection between nodes and elements. 

B. Calculation of element stiffness matrices 

On the basis of material properties and topological data given in the first stage 

matrices expressing relationships between nodal forces and nodal displacements of an 

element are formed. 

C. Aggregation (construction) of a global stiffness matrix 

Now element stiffness matrices are divided into blocks which merge into a 

global stiffness matrix for which the information about construction topology is used. 

Modifications taking into consideration boundary conditions are often introduced into 

the global matrix at that stage. 

D. Construction of a global loads vector 

Here we calculate load vectors of elements which, after being divided into 

blocks, are inserted into the global vector of nodal loads. When the global vector is 

built, then its components should be modified with regard to boundary conditions. 

E. Solution of a set of equations 

At this stage, a set of linear equations will be solved. In effect, we will obtain the 

nodal displacements of a structure. 

 

F. Calculation of internal forces and reactions 

If we obtain displacements, we can then calculate strains, stresses and internal 

forces in a structure. After having calculated element nodal forces, reactions at 

constraints (supports) of the construction can also be calculated. 
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The systems of FEM usually have a modular structure. Individual stages of the 

algorithm are solved by specialised modules of the system. 

The first stage (A) complemented by defining material properties and describing 

construction loads is called a preprocessor. In old systems, this stage depended on 

manual creation of a data file (input file). At present, such a situation occurs very rarely 

because manually inputting data for the typical problem of FEM (covering a few 

thousands of nodes) is very hard work. Contemporary preprocessors are usually graphic 

programmes equipped with tools simplifying the generation of element meshes. 

Stages (B), (C), (D), and (E) are usually performed by the module called a 

processor. Apart from the operations mentioned above, the processor often deals with a 

suitable arrangement of equations in order to reduce the amount of memory for the 

storage of the stiffness matrix and to accelerate the process of solving systems of 

equations. 

The sixth stage (F) complemented by graphical output is undertaken by a 

postprocessor. A large amount of results that we get after solving any system of 

equations and calculating internal forces is very difficult to interpret without using 

graphical techniques. Contemporary FEM systems are equipped with a graphic 

postprocessor producing colour maps of stresses, displacements and other parameters 

which simplify analyses. 

Although visual techniques are strongly linked with the finite element method, 

they are not a part of this course; hence they are not described in this book. We will 

concentrate on the processor and parts of the postprocessor. 

1.3.1. Creation of element stiffness matrices 

As we have already noted in this chapter (point 1.1), we assume that after having 

divided the structure into finite elements, these elements are only in contact with each 

other at nodes. It will be convenient if we imagine a node as a material particle moving 

during the deformation process caused by external loads affecting the structure (forces, 

temperatures, etc.). We can describe the movement of a node by giving the components 

of the displacement vectors. We will be interested in different types of motion 

according to the element type. In some cases they will be displacements (in truss 

elements, two-dimensional plane elements, solids), in other cases there are rotations (in 

beams, frames, plates, shells). All necessary components of a nodal displacement create 
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the system of parameters called degrees of freedom. We will mark the number of 

degrees of freedom as ND. 

In Table 1 there is information on the number of degrees of freedom for nodes of 

typical engineering structures. Degrees of freedom are given as components of 

displacement vectors in the Cartesian coordinate system. 

 

Table 1. The degree types of freedom for elements. 

Type of structure  Number of 

degrees of 

freedom 

Displacements Rotations 

 ND ux uy uz φx φy φz 

plane truss 2       

space truss 3       

plane frame 3       

space frame 6       

grillwork 3       

two-dimensional 

element  

2       

plate 3       

shell 6       

solid (brick) 3       

 

 

Figure 1. The plane finite element with four nodes. 
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Let us imagine some quadrilateral element (for convenience we will take a plane 

element which is easy to draw) having number e (Figure 1). The nodes of this element 

are locally numbered: i, j, k, l and they have their global numbers respectively: ni, nj, nk, 

nl. Nodal coordinates are always given in the global coordinate system XY , but  for 

convenience we use any local coordinate system while forming an element stiffness 

matrix. The local coordinate system is chosen at random. 

We group nodal displacements in the displacement vector: 
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
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(29) 

The set of all nodal displacements of an element forms the vector of nodal 

displacements of an element: 
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The displacement of a certain point m within the element is written in the form 

of the vector: 


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u  (31) 

If the components of vectors are defined in a local coordinate system, then we 

will denote them as the sign ' (prim), for instance: 











),(

),(
),(

yxu

yxu
yx

y

x
u  (31a) 

Similar notation can be used in Eqn. (29) and (30) but for the time being we will 

use only global relationships for convenience. 

Now we assume that the displacement of some point m depends on nodal 

displacements of an element: 

ee yxyx uNu ),(),(   (32) 
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where N(x,y) is the matrix component which depends on the coordinates of a 

point. The dimensions of the matrix N(x,y) depend on element type. The number of 

rows of the matrix N(x,y) is equal to the number of degrees of freedom of the point m 

and the number of columns, represents the number of degrees of freedom of the 

element. In our example where the point has two degrees of freedom and the element 

has 4x2=8 degrees of freedom, the matrix N(x,y) has two rows and eight columns. 

Thus, it will be convenient to present Eqn. (32) in a developed form: 

 
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
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


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u

u

u

NNNNu  ),(),(),(),(),(

 

(32a) 

where matrices Ni(x,y) ... Nl(x,y) are quadratic matrices containing functions which 

show the influence of the displacements of nodes i ... l on the displacement of the point 

m. In the finite element method, these functions are known as shape functions or 

displacement functions and they are very important for the formulation of FEM 

equations. Matrices Ni(x,y) ... Nl(x,y) are called matrices of shape functions of nodes 

i ... l and the matrix  yxe ,N  is the matrix of shape functions of an element. 

It is obvious that shape functions should fulfil some conditions to be useful for 

the approximation of the field of an element displacement. If we imagine that the point 

m is at a node, then its displacements should be equal to the displacements of this node, 

but the displacements of other nodes should not have any influence on them (Figure 2). 

 

 

Figure 2. The deformation of the element surface whose the k node is displaced 

by a unit in the direction perpendicular to this element. 
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This condition can be expressed in the following way: 

  pqqqp yxN ,  (33) 

where pq  is Kronnecker’s delta: 







qp

p=q
pq

 when -     0

, when -     1
  

and p and q represent any local number of nodes i ... l. 

Conditions of type Eqn. (33) allow us to determine the coefficients of shape 

functions. We will consider some other conditions which have to be fulfilled by 

functions Np(x,y) in later parts of this chapter. 

Substituting Eqn. (32) for Eqn. (5) we calculate the components of the element 

strain vector: 

  ee yx uNDε ,  (34) 

where D is the matrix with dimensions 3 × ND for both plane stress and plane strain or 

6 × ND for three-dimensional problems (ND is the number of degrees of freedom of a 

node) containing differential operators coming from the definition of strain Eqn. (2) 

For a two-dimensional problem, ND=2 and the matrix of differential operators 

has the following form: 



















xy

y

x







0

0

D , (35) 

where symbol x signifies differentiation with respect to x:
x

x



=  and y  with 

respect to y. 

We assume the notations: 

   yxyx ee ,, BN D  (36) 

and consistently 

   yxyx ii ,, BN D , 

: 

   yxyx ll ,, BN D . 

(37) 

They simplify further transformations. 
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After taking into consideration these notations, relation Eqn. (34) can be 

presented as: 

  ee yx uBε , , (38) 

The matrix B(x,y) has dimensions 3×
e

Dn  (or 6×
e

Dn  for three-dimensional 

problems of stress). 

For a quadrilateral element in a two-dimensional problem, matrix B(x,y) has 

dimensions 3×8. As with matrix N(x,y), we now similarly divide the matrix B(x,y) into 

blocks: 

 ),(),(),(),(),( yxyxyxyxyx lkji

e
BBBBB   (39) 

Matrices Bi ... Bl are matrices containing strain shape functions of nodes i ... l, 

and B
e
(x,y) is the matrix containing strain shape functions of the element e. 

Here we replace reactions between nodes and elements by concentrated forces. 

The scheme of these reactions is shown in Figure 3. 

 

 

Figure 3.The arrangement of nodal forces over the element. 

 

Now we collect the components of nodal forces into the nodal force vector: 
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and the forces acting on an element into the nodal force vector of an element: 
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Let us look for the relationship between nodal forces 
e

f  and nodal 

displacements 
e

u . 

We apply the principle of virtual work Eqn. (22) treating the nodal forces as the 

external loads on an element. The element is loaded both on its inside and boundary and 

we denote the load which depends on the coordinates of a point as follows: 

 
 
 








yxq

yxq
yx

y

x

,

,
,q  (42) 

We divide constitutive Eqn. (5) (or for instance Eqn. (12) and (13) for plane 

stress) into parts in order to consider initial strains and stresses: 

  oo σεεDσ   (43) 

where εo is the initial strain vector (for example, caused by temperature loads) and σo is 

the initial stress vector (eg. residual stresses). 

Now we re-write Eqn. (22) expressing the equality of external and internal work 

for the element in equilibrium: 

       
V

Vddyxyxee
σεqufu

TTT

A

A,,  (44) 

The left hand side of this equation represents external work while the right hand 

side denotes internal work for this element, A represents the surface of an element and 

Vis its volume. We use Eqn. (32), (38) and (43) in the above equation: 

         
V

Vdd eeeeeeee

oo σεuBDuBquNfu
TTT

A

A  (45) 

After the transformation we obtain its final form as follows: 

eee

q

eee

oo  fffuKf   (46) 

where the following values have been noted: 
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- nodal forces vector due to external loads: 

 
A

Adee

q qNf
T

 (47) 

- nodal forces vector due to initial strain: 

 
V

Vdee

o oDεBf
T

  (48) 

- odal forces vector due to initial stress: 

 
V

Vdee

o oσBf
T

  (49) 

- element stiffness matrix: 

 
V

Vdeee
DBBK

T

 (50) 

Thus calculated nodal force vectors contain forces acting on the element. They 

should be marked with the negative sign when forming equilibrium equations. 

The matrix K
e
 can be divided into a block of quadratic matrices 

e

pqK describing 

the influence of the displacement of the node q on the forces at the node p: 

 
V

Vde

q

e

p

e

pq DBBK
T

 (51) 

There are 4×4=16 blocks in the stiffness matrix of the element with four nodes 

(Figure 3). Since the stiffness matrix is symmetrical, it means that  Tee
KK   which 

comes from Eqn. (50) and it is a simple consequence of the Betti reciprocal theorem of 

work; then blocks 
e

pqK  have to realise the conditions: 

 Te

pq

e

qp KK   (52) 

Eqn. (50) or (51) represents a key step in formulating equilibrium equations of 

the structure but the stiffness matrix has not always been determined this way. For 

simple elements such as a truss element or a frame element, some other ways 

(sometimes simpler) of obtaining relation Eqn. (46) exist. We will show these in next 

chapters. 

If all transformations leading to Eqn. (50) have been done in the local coordinate 

system (xyz), then the resulting stiffness matrix should be transformed to the global 

coordinate system (XYZ). This transformation is achieved by multiplying the matrix 
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K
e '  (sign prim denotes a matrix in the local coordinate system) by the transformation 

matrix of the element. The detailed structure of these matrices is elaborated on in 

Chapters 2, 3 and 4, here we simply illustrate the transformation: 

 Teeee
RKRK   (53) 

where  
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Ri ... Rk - transformation matrices of nodes i ... k. The transformation matrices of 

the nodes contain cosines of angles between the axes of the global and local coordinate 

systems: 
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where, for instance,  xYxYC cos , etc., αxY is the angle between the x axis of the local 

coordinate system and the Y axis of the global system. 

1.3.2. Aggregation (construction) of a global stiffness matrix 

Relation Eqn. (46) allows us to write equilibrium equations of a node in the form 

containing nodal displacements as unknown. 

Let us imagine a node as an independent part of a construction and disconnect 

elements from nodes in order to show nodal forces (Figure 4). 
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Figure 4. The senses of forces representing the interaction between elements and 

nodes. 

 

We write a set of equilibrium equations of the node in the scalar form: 





n

k

E

k

e

XF
1

0  , 



n

k

E

k

e

YF
1

0  , 



n

k

E

k

e

ZF
1

0  (56a) 

For the nodes with rotational degrees of freedom, the equilibrium equations of 

moments will be necessary: 
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(56b) 

In Eqn. (56) summation is required for all elements connected to the node, hence 

indices e1, e2 ... 
nEe are numbers of elements connected to the node, En is the number of 

elements connected to the node n. We insert relationship Eqn. (46) into Eqn. (56) 

remembering to change the sign of the nodal forces coming from the change of sense of 

the forces acting on the element and node (Figure 4): 

0
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In this equation, symbol 
ke

nf defines only these components of vector ke
f  which 

act on the node n. We convert this equation into a more convenient form: 

k

n

kk e

n

E

k

e

n

e

n puK 
1

 (58) 

where 
eee

q

e

oo  fffp   is the vector of the nodal forces due to external loads, initial 

strains and stresses. 

Arranging equations for every node of the structure similar to Eqn. (56), we 

obtain a set of equations which allow us to calculate nodal displacements for this 

structure. Since summation is done for the elements in Eqn. (56) (the force vectors 

which belong to this node), formation of a set of equations based on the equilibrium of 

successive nodes is not effective. 

Ordering nodes and degrees of freedom is necessary for this operation. So far we 

have used local numbers for nodes of elements i, j, k, l .., but introducing global 

numeration of nodes is necessary while building the global set of equations. Let ni stand 

for a global number of the node represented by the local number i and let sp be a global 

number of degrees of freedom represented by the local number p. Now we form a 

rectangular matrix of connections of the element e  A
e
. The number of rows of the 

matrix A
e
  is equal to the global number of degrees of freedom of the structure Nk , the 

number of columns is equal to the number of degrees of freedom of the element 

e  
e

DN . Most components of the matrix A
e
 are equal to zero apart from the 

components having the value of 1 which are situated in rows sp and columns p. Hence, 

the structure of the matrix A
e
  contains information about connections between the 

element and nodes or being more exact about the relationship between the degree of 

freedom of the element and the global degree of freedom of the structure. The formation 

of the connection matrix can be most easily studied on the following example. 

Figure 5presents a plate divided into five triangular elements. The plate has six 

nodes numbered from 1 to 6, every element has a local notation of nodes i, j, k. Table 2 

shows global numeration of degrees of freedom of a two-dimensional element of the 

plate. 
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Figure 5. The exemplary discretisation of the 2D membrane into five finite 

elements. 

 

Table 2. The global numbers of degrees of  freedom for nodes in the plate (Figure 5). 

Node number Global numbers of degrees of  freedom of nodes 

n unX unY 

1 1 2 

2 3 4 

3 5 6 

4 7 8 

5 9 10 

6 11 12 
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Table 3.The global numbers of degrees of  freedom for elements in the plate (Figure 5). 

Element number Global numbers of degrees of freedom of element  

spallocation vector 

e uiX uiY ujX ujY ukX ukY 

 1 2 3 4 5 6 

1 5 6 1 2 7 8 

2 1 2 3 4 7 8 

3 7 8 3 4 9 10 

4 7 8 9 10 11 12 

5 5 6 7 8 11 12 

 

Table 3shows the dependence between local and global degrees of freedom. 

Hence the connection matrix created for element No 3 will have the following form: 

 

where all zero elements are neglected for clarity. 

Multiplying the nodal force vector of an element by the connection matrix 

causes the transfer of suitable blocks of the local vector to the global vector. Now 

simple addition of these vectors is possible: 
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Here it is necessary to express the nodal displacement vector of elements by 

means of the global vector: 

  uAu
Tee  , 

which should be put into Eqn. (59). Finally, we obtain the system of equations in the 

form: 
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eee
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 (60) 

or in a shorter form 

puK  .
 (61) 

Matrix  



EN

e

eee

1

T
AKAK is called the global stiffness matrix of a structure, 

vector 



EN

e

ee

1

pAp  is the global vector of nodal forces of the structure, the vector u 

containing the displacement of all nodes is the global displacement vector. 

A similar method of aggregation is described in the book written by Rakowski 

and Kacprzyk (1993) where matrix A
T
 is called the connection matrix. 

The method of aggregation using the connection matrix is not suitable for 

computer implementation because it uses the big matrix e
A . It is more effective to 

exploit information which is contained in allocation vectors. Vectors for the previous 

example are included in Table 3. The aggregation method using allocation vectors will 

be presented in the second chapter in sections devoted to building the stiffness matrix of 

a truss. 

1.3.3. Remarks regarding the shape functions of an element 

Functions approximating the displacement field within elements which are in 

fact shape functions described in Sec.1.3.1 cannot be chosen in freely. They should 

fulfil some conditions which decide about the quality of these functions or their 

usefulness for approximation of displacements, strains and stresses. We quote these 

criteria after Zienkiewicz (1972). 

 

A. Criteria of rigid body movements 
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The displacement function chosen should be in such a way that it should not 

permit straining of an element to occur when the nodal displacements are caused by a 

rigid body displacement. 

B. Criterion of strain stability 

The shape function should enable the constant field of strains in an element to 

appear.  

C. Criterion of strain agreement 

The displacement functions should be so chosen that the strains at the interface 

between elements are finite. 

Criteria (A) and (B) seem to be obvious. Since some components of strain (or 

stress) can be zero, then approximation functions should be able to reproduce these 

problems. Constant and linear parts of polynomials which we often use to build a shape 

structure, assure realisation of conditions (A) and (B). Criterion (B) is the generalisation 

of criterion (A) and it was formulated by Bazeley, Cheung, Irons and 

Zienkiewicz (1972, 1994) in 1965. 

Criterion (C) requires that shape functions should assure continuity of 

derivatives to the degree which is lower by one than differential operators being in the 

matrix D (comp. Eqn. (34)). We explain this using the following example.  In the two-

dimensional problem of a plate, the strains are defined by the first derivation of the 

displacement function (comp. Eqn. (34) and (35)), because the displacement field has to 

be continuous on the boundary between elements and displacements functions have to 

be of class C
0
. For plate elements, the curvatures given by the second order derivatives 

take the role of displacements (comp. chapter 7). Hence the displacement function of a 

plate should assure continuity both of the surfaces of a plate deflection and its first 

derivations inside and on the boundaries between elements. Then the displacement field 

should be continuous and smooth within the plate. These functions are said to be of 

class C
1
. 

Criteria (A) and (B) have to be realised, criterion (C) does not. For instance, the 

shape function of plate elements does not often achieve the condition of continuity 

(continuity of the first derivations on boundaries of elements). If all criteria are realised, 

then we say that the described elements are ‘adjust ones’ If only criteria (A) and (B) are 

achieved, then elements are called ‘not adjust ones’. 

The result of applying ‘adjust’ and ‘not adjust’ elements to discretization of a 

structure is presented inFigure 6. The convergence of results obtained with the help of 
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the different types of elements which are used for discretization of a quadratic plate is 

shown in the same figure. 

 

non adjust elements

adjust elements

exact result

d
is

p
la

ce
m

en
t

number of elements 

Figure 6. The precision of calculations for incompatible and non-incompatible 

elements depending on the number of elements. 

 

Apart from the three listed criteria we can also add some others which determine 

the choice of approximation polynomials. This choice should assure isotropy with 

respect to axes of a coordinate system. We will show this using the example of building 

shape functions of plate elements (two- and three-dimensional problems). If we present 

approximation polynomials in the form of Pascal’s triangle, then the choice of part of 

this triangle should be symmetrical in with respect to its axes. It is shown inFigure 7. 

 

 

Figure 7. Pascal’s triangle. 
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We can use Hermitte (described in chapter 4 of this book) and Lagrange 

polynomials (Zienkiewicz (1972)), but we always have to maintain the condition of 

isotropy. 

There is a long list of references as far as shape functions are concerned but we 

recommend the following books: Bathe (1996), Rakowski and Kacprzyk (1993), Rao 

(1982), Zienkiewicz and Taylor (1994). 
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2D truss structures 

2D trusses are one of the most common types of structures. The structure of a 

truss is economic since the ratio of the structure weight to forces carried by this 

structure is expressed as a small number. According to assumptions, loads (concentrated 

forces) will act on nodes only (temperature loads are an exception here) and connection 

bars will be joined with nodes in an articulated way. Although most structures which 

have been built lately are trusses with rigid nodes (they are basically frame 

constructions which are presented in Chapter 4), methods of solving problems in truss 

statics with articulated joints are still very important in engineering practice. The system 

of a plane truss with an articulated joint is the simplest example of an construction 

showing the idea of the finite element method without employing any complicated 

details. Though the structure of the method is very simple, most notions, algorithms and 

relations connected with the FEM algorithm will be relevant in discussions of more 

complex structures. 

1.4. Basic relations and notations 

We assume that the bar of a plane truss (we will also call it an element) is 

straight and homogeneous (it means that it is made from a homogeneous material 

without fractures and holes and has a constant cross section) and it joins nodes i (the 

first node) and j (the last node). Notations for these nodes (i, j) are local notations which 

are the same for all bars and they are to define element orientation. On the other hand, 

structure nodes also have global numbers which allow us to identify them. Global 

numbers are marked as ni (the global number of the first node) and nj (the global 

number of the last node). The node of a plane truss can move on the plane XY only. In 

mechanics, it means that the node has two degrees of freedom because in order to 

determine its location during its motion it should be given two coordinates. The 

situation of the node i of a rigid structure will be determined by initial coordinates Xi, Yi 

with respect to the coordinate system which will be used for the description of the 

whole structure. We say that this system is global and its axes will be denoted by capital 

letters X, Y. The location of the node i, after its deformation caused by loads, is 

determined by two components of the displacement vector of nodes uiX and uiY. This 

method of description of the structure movement is called the Langrange description in 

mechanics. The description of some dependence between forces and element 

displacements becomes much simpler when we introduce a local coordinate system 
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which will be denoted by small letters x, y. The x axis of the system overlaps the axis of 

the bar and has its beginning at the first node of an element i, while the y axis is 

perpendicular to the x axis and is directed in such a way that the Z axis of the global 

coordinate system and z axis of the local system have the same sense and direction. 

Because we accept that both coordinate systems are right-torsion, we can obtain the axis 

y by rotating the x axis clockwise through the angle π/2. 

 

 

Figure 8.Nodal forces and displacements for the 2D truss element: a) in the 

global coordinate system; b) in the local coordinate system. 

 

The most important notations, directions as well as senses of vectors and the 

coordinate systems are shown in Figure 8. 

Nodal displacements and forces of elements are written as column matrices 

which we will call vectors. 

The nodal displacement vector of the first node i and the last node j in the local 

coordinate system: 











iy

ix

i u

u
u , 










jy

jx

j u

u
u . (62) 
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The nodal displacement vector of the element e in the local coordinate system: 



































jy

jx

iy

ix

j

ie

u

u

u

u

u

u
u  

 

(63) 

The nodal forces vector of the first node i and the last node j in the local 

coordinate system: 

f 'i
ix

iy

F

F











, 

f ' j

jx

jy

F

F











 
(64) 

The nodal forces vector of the element e in the local coordinate system: 

f
f

f
'

'

'
e i

j

ix

iy

jx

jy

F

F

F

F










 





















. 

(65) 

1.5. The element stiffness matrix of a plane truss in the 

local coordinate system 

We look for the relation between nodal force vectors and nodal displacement 

vectors (comp. Chapter 1), which is necessary to express equilibrium equations 

depending on the nodal displacements 

K u f' ' 'e e e
. 

(66) 

The general method of building such a relationship consists of using the 

principle of virtual work (comp. Chapter 1), but in this case we will apply different 

approach. We will use the equilibrium conditions in their basic forms which is possible 

in the case of bar elements. 

Equilibrium equations for the element e (Figure 8) lead to the following 

relations: 

F F Fx ix jx    0
 

F F Fy iy jy    0
 

M F Li jy   0
 

 (67) 

and we obtain 
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0iyF ;    0jyF ;    jxix FF  . (68) 

Since the set of three equilibrium Eqn. (67) or (68) contains four unknown 

parameters, this problem is statically indeterminate. The arrangement of an additional 

equation is necessary in order to make the determination of nodal forces possible. This 

equation ought to use the relation between nodal displacements of an element and its 

internal forces. Hooke’s law written for a simple case of axial tension of a straight and 

homogeneous bar contains these relations (Figure 9): 

L
N L

E A


, 

(69) 

where N is the axial force in the bar (the positive value of an axial force always means 

tension), L is the bar length, ΔL signifies increment of the bar length due to the bar 

tension caused by the force N; E is Young’s modulus of the material from which the bar 

is made; A is the area of the bar cross section. 

 

 

Figure 9. The bar streched along its own axis with the notation used in Eqn. (69). 

 

Comparing Figure 8 and Figure 9we can observe simple relations between nodal 

forces acting on the bar, that is, Fix, Fjx (Figure 8) and the axial force N (Figure 9): 

NFix   ;    NFjx  . (70) 

As it is shown above, these relations satisfy the third equilibrium Eqn. (68) 

identically. 

The increment of the bar length due to tension results from axial displacements 

of the bar endings: 

L u ujx ix 
, 

(71) 

which after inserting into Eqn. (69) leads to the relation: 

 N
EA

L
u ujx ix 

. 
(72) 
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Taking into consideration the relationship between the axial force of the element 

and nodal forces Eqn. (70) with respect to Eqn. (72) we obtain: 

 
jxixix uu

L

EA
F  ;  

jxixjx uu
L

EA
F   (73a) 

0iyF ;   0jyF . (73b) 

The resulting relations are the searched relations Eqn. (66) between the nodal 

forces and nodal displacements of the truss element. We will write them one more time 

in a different form: 

 
EA

L
 0 

EA

L
 0    uix 

   Fix 
   

(74) 
 0 0 0 0    uiy  =  Fiy  .  

 
EA

L
 0 

EA

L
 0    ujx 

   Fjx 
   

 0 0 0 0    ujy    Fjy    

 

After considering notations Eqn. (63), (65) and (66), the above form leads to the 

equation: 

K 'e = 

 
EA

L
 0 

EA

L
 0    

(75) 
 0 0 0 0  ,  

 
EA

L
 0 

EA

L
 0    

 0 0 0 0    

 

which defines a matrix Kʹ
e
. This matrix will be called the element stiffness matrix of a 

plane truss. The matrix in the form of Eqn. (75) expresses relationships between the 

vector uʹ
e
 and the nodal force vector of an element e

f   in the local coordinate system. 

The stiffness matrix Kʹ
e
 can be simplified to: 

K
J J

J J
'

' '

' '
e 















, 

(76) 

where J' is the square matrix defined in the following way: 
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J'










EA

L

1 0

0 0
 

(77) 

1.6. Coordinate system rotation 

The form of the element stiffness matrix determined in the local coordinate 

system will not be convenient in further considerations for which we will use matrices 

of different elements. The most convenient method is transforming all matrices to the 

form which is defined in one common coordinate system. Such a system will be called 

the global coordinate system. It can be the system of a certain type: cartesian, polar or 

curvilinear. The cartesian coordinate system is the most convenient system for a truss. 

Nodal coordinates of a structure are usually given in the global coordinate system. 

Now we convert the element stiffness matrix to the global system. We start the 

transformations by finding relationships for a single node: 

u u uiX ix iy cos sin 
 

u u uiY ix iy sin cos 
 

(78) 

or in matrix form: 
















 










iy

ix

iY

iX

u

u

cs

sc

u

u
, (79) 

where cosc  and sins . 

 

 

Figure 10. Displacement vector components in the global and local coordinate 

systems rotated through the α angle. 

 

Denoting 
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ui

iX

iY

u

u











 

(80) 

and taking into consideration notation Eqn. (62), we obtain: 

iii uRu  , (81) 

where 






 


cs

sc
iR  (82) 

is the transformation matrix of the vector 
iu  from the local system to the global one. 

A reverse relation will be required: 

 u R u'i i i
1

, 
(83) 

where   1

iR  is the inverse matrix of Ri; it means that it has such a property that 

 R R Ii i




1

, 
(84) 

where I is the identity matrix 

I 










1 0

0 1
. 

(85) 

The matrix Ri like other transformation matrices has the property that  

   Tii RR 
1

, (86) 

it means that Ri is the orthogonality matrix (the determinant of this matrix is equal to 1, 

i.e. det(Ri)=1;   1det 
T

iR ). We can easily check the property Eqn. (86) of the matrix 

Ri by making a direct calculation: 

  IRR 
















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
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
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







 


10

01
22

22

sccssc

sccssc

cs

sc

cs

sc
ii

T
. 

The transformation matrix contains the blocks of the nodal transformation 

matrix: 

R
R 0

0 R
e i

j












, 
(87) 

where Ri is the transformation matrix of the first node, Rj is the transformation matrix 

of the last node and 0 is the part of the matrix containing zero values. The 

transformation matrices Ri and Rj are usually identical (for straight elements) because 
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rotation angles of the vector of nodes i and j are equal. Since the truss elements are 

straight, we can write Ri =Rj.  

Finally, the relationships between the nodal displacement vector of the element 

expressed in the local system and the same vector in the global system have the form: 

u R u
e e e '  (88) 

  eee
uRu

T
'  (89) 

The relationship between the nodal force vector of an element in the local 

system and the same vector in the global system is identical to the relationship that we 

have obtained in the equations describing displacements 

f R fi i i '
 (90) 

and 

  iii fRf
T

' , (91) 

f R f
e e e ' , (92) 

  eee
fRf

T
' . (93) 

1.7. The element stiffness matrix in the global coordinate 

system 

Multiplying Eqn. (66) by the transformation of the matrix e
R and substituting 

relation (89) for e
u , we obtain 

  eeeeee '' fRuRKR 
T

 (94) 

On the basis of relation Eqn. (92) the right hand side of this equation is equal to 

e
f , so if we introduce the notation 

 Teeee
RKRK '  (95) 

we obtain 

f K u
e e e , (96) 

It is the required relationship between nodal forces and displacements of the 

element in the global coordinate system. 

If we perform the multiplication in Eqn. (95), we obtain 
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













JJ

JJ
K

e
, (97) 

where   









2

2

ssc

scc

L

EA
J . (98) 

We can exchange form Eqn. (98) of the matrix J into the equivalent one in 

which trigonometric functions do not exist. Let us note that 

L

L
c X cos  and  

L

L
s Y sin . (99) 

After inserting these relations into Eqn. (98), we obtain 

J 










EA

L

L L L

L L L

X X Y

X Y Y
3

2
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(100) 

1.8. Nodal equilibrium equations and aggregation of 

a stiffness matrix 

Replacing existing bars (elements) of a truss by nodal forces we obtain a group 

of nodes which can be treated as material particles with two degrees of freedom. These 

nodes are loaded with concentrated forces coming from elements or external loads. The 

equilibrium conditions for such a node are as follows: 

 P F PX nX

e

k

E

nX
k

n

    
1

0

, 

 P F PY nY

e

k

E

nY
k

n

    
1

0

, 

(101) 

where we have denoted ke

nXF - component in the direction X of nodal forces from 

the element numbered ek acting on a node n, 
nXP - component in the direction X of the 

external forces acting on the node n, En - number of elements joined to the node n. 
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Figure 11. Nodal and external forces acting on the truss node. 

 

Now we transform the set of Eqn. (101) to the form containing nodal 

displacements: 

 K K K K u p1 2n n in N n nn
  

 
(102) 
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In Eqn. (102) 
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 signifies the global vector of nodal displacements of a structure, 











nY

nX

n
P

P
p  is the vector of external forces acting on the node n, 

matrices Kin are quadratic matrices with dimensions 2x2 determined as follows: 

where i=n - 



n

k

E

k

e

nn

1

JK , (103) 

nEk eeee 21, - are numbers of the elements joined at node n, 

if ni   and nodes i and n are not directly connected by any elements, then 0inK , 

if ni   and nodes i and n are connected by some element with a number e, then 

K Jin
e 

, 

J
e
  signifies the block of a stiffness matrix of the element e (comp. Eqn. (98)). 

Arranging equilibrium Eqn. (102) for all nodes of a structure we obtain the final 

form of equations allowing determination of nodal displacements of the truss: 

 K11  K12   K1n   K1Nn  
   u1    p1 

 

 K 21  K 22   K 2n   K 2 Nn  
   u2    p2 

 

                  =     

 K n1  K n2   K nn   K nNn  
   un    pn 

 

                       

 K Nn1  
K Nn 2  

 K N nn  
 K N Nn n  

   uNn  
   pNn  

 

 

or     puK   (104) 
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The matrix K of the set of Eqn. (104) is the global stiffness matrix of the 

structure, the vector u is the global vector of nodal displacements of the structure and 

the vector p is the global vector of nodal forces of the structure. 

Careful numbering of the nodes can allow K to the banded matrix which is 

characterised by a fact that non-zero components appear on the main diagonal and 

closely to it. The matrix K is a symmetric matrix which means that its components 

satisfy equations: 

jiij KK   or 
T

KK   (105) 

which result from the principle of virtual work (comp. Chapter 1). Components Knn 

which are on the main diagonal are always positive 

Knn  0
 (106) 

which is a direct conclusion drawn from definitions Eqn. (98) and(103). 
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Figure 12. The stiffness matrix aggregation scheme. 
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The zero component Knn demonstrates geometric changability of a structure and 

should be removed by a suitable change of a geometric scheme. The matrix K presented 

in Eqn. (104) is a singular matrix (it means det K=0), hence the set of Eqn. (104) cannot 

be solved without modifying it. This modification will depend on the consideration of 

boundary conditions. We will consider this problem in the next section.  

The process of building the global stiffness matrix is called aggregation of a 

matrix. It can be done by means of the method described in Chapter 1 demanding 

formation of connection matrices. Since these matrices are large, then their use is not 

convenient and they are rarely used in computer implementation of the FEM algorithm. 

The method of summation of blocks shown by Eqn. (102) and (103) is much simpler. 

The form of matrix Eqn.(102) and (103) may seem to be complicated, but in fact, we 

have very simple operations of insertion of blocks here. This method is best shown in 

Figure 12. 

‘+’ signs located at arrows pointing to the place of location of blocks K
e
  mean 

that blocks J
e
 should be added to the existing contents of ‘cells’ of matrices 

iinnK  or 

jjnnK , and blocks J
e
 lying beyond the diagonal should be added to ‘cells’ 

jinnK or 

ijnnK . In the case of a truss where nodes are usually joined by one element, blocks lying 

beyond the main diagonal contain only a single matrix J
e
. But blocks lying on the 

main diagonal 
iinnK contain sums of as many matrices J

e
 as elements joined with the 

node ni. 

1.9. Boundary conditions 

As it was noted in the previous section of this Chapter that the global stiffness 

matrix of a structure is most often a singular matrix directly after the aggregation. It 

means that the determinant of this matrix is equal to zero. Because the set of Eqn. (104) 

has to have only one solution for static problems, we have to modify the global stiffness 

matrix. It should be done in such a way that the solution of the set of linear Eqn. (104) is 

possible. The reason for the singularity of the matrix K is the lack of information about 

supports of the construction, thus we need to define what the support of the node is. 

For trusses there are two types of supports possible: an articulated support and 

an articulated movable support. The articulated support (shown in Figure 13a) prevents 

movements of a node in any direction which means: 
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urX  0 , urY  0 . (107) 

The movement of the support node r causes reactions in two components: RX 

and RY (Figure 13a), which counteract the movement of the node r. We say that this 

support assures free support of a node. 

 

 

Figure 13. Plane truss support types. 

 

The next support shown in Figure 13b is called an articulated movable support 

and it prevents movements of a node along one line only, but it allows movement of a 

node in perpendicular direction with respect to this line. The reaction occurring in the 

articulated movable support can have the direction of this line only (Figure 13b,c,d). 

The support can appear in a few forms, two most often occurring variants (shown in 

Figure 13b,c) give very simple support conditions: 

- support with the possibility of movement along the Y axis of the global 

coordinate system (Figure 13b) 

urX  0 , (108) 

- support with the possibility of movement along the X axis of the global 

coordinate system (Figure 13c) 

urY  0 . (109) 
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The third variant of a movable support causes problems when describing the 

boundary conditions because the direction of the reaction of this support (Figure 13d) is 

not parallel to any axis of the global coordinate system. It is important because 

equilibrium Eqn. (101) leading to Eqn. (104) were written in the global coordinate 

system. In the case of a support with movement not parallel to any axis of the global 

coordinate system (we will call such supports skew supports) we have to write the 

boundary conditions in the system x'y' connected with the support. The system x'y' is 

rotated with respect to the global system by an angle α' (Figure 13d). We will explain 

the transformation method for a set of equations at a support node to the local system in 

the next section. Now we will focus on describing the boundary condition. We write the 

condition of absence of a movement along the y' axis analogously as in Eqn. (109): 

ury '  0
. 

(110) 

Eqn. ((107)...(110) describing the boundary conditions give us the values of 

displacements at support nodes. Hence some equations of set Eqn. (104) should be 

removed, because they contain unknown forces acting on support nodes (constraint 

reactions). These equations can be replaced by equations of boundary conditions (for 

example Eqn. (107)). It is usually done by modifying some Eqn. (104). 

Let m be the global number of the degree of freedom which is eliminated by the 

boundary condition: 0mu , then we modify the row with the number m in the global 

stiffness matrix K, replacing it by a row containing zeros and the value 1 in the column 

m: 

 K11  
K12  

 K1m  
 K1Nn  

   u1    P1  

 K 21  
K 22  

 K2m  
 K 2 Nn  

   u2    P 2  

                  =     

 0 0  1  0    um    0  

                       

 K Nn1  
K Nn 2  

 K N mn  
 K N Nn n  

   uNn  
   PNn  

 

 

or 
ro

puK  . (111) 

The nodal load vector p should be modified so that equation m contains zero on 

the right side. The modified matrices are marked in Eqn. (111) by a superscript r. 
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These changes in the stiffness matrix disturb the symmetry because Kim ≠ 0 but 

Kim = 0 when mi   (comp. Eqn. (111)). The absence of symmetry in the stiffness 

matrix does not prevent the solving of the equilibrium Eqn. (104) but it considerably 

loads the computer memory storing coefficients Kij either in the core memory (RAM) or 

external space (disk) which lengthens the solution time for a set of equations (comp. 

Appendix 2). Thus, let us try to restore the symmetry of the matrix K
o
 (Eqn. (111)). Let 

us note that the terms located in the column with the number m are multiplied by the 

zero value of the displacement um. Hence we can insert zeros instead of coefficients in 

the column m (except for one coefficient in the row m which has to be equal to 1). If we 

modify the stiffness matrix in that way, the solution of our problem will be the same and 

the matrix will be a symmetric one: 

  K11  
K12  

 0  K1Nn  
   

(112) 

  K 21  
K 22   0  K 2 Nn  

   

K
r                  

  0 0  1  0    

                

  K Nn1  
K Nn 2  

 0  K N Nn n  
   

Finally, we solve the problem: 

K u p
r r

, 
(113) 

where the matrix r
K is symmetrical and is not singular which means that 0det r

K , 

if we have properly chosen the boundary conditions. On the basis of the theorem about 

the positive value of a strain energy (comp. Eqn. (45), Chapter 1) we can conclude that 

the matrix 
r

K  has to be positive-determinant, then 

detK r  0 . (114) 

Hence the set of Eqn. (113) has one solution. 

In small finite element systems (programs) the matrix r
K  is usually left in the 

form noted in Eqn. (112). Large and complex systems used to solve problems described 

by many thousands of equations usually remove rows and columns containing zeros 
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from the matrix r
K  and vector

r
p . This is done to reduce the dimensions of a solved 

problem. This method of modification of the matrix r
K  requires re-numbering of 

degrees of freedom of a structure. Because it is not strictly joined with FEM and is 

connected with the computer implementation of the FEM algorithm, we will not 

describe it here. 

1.10. Transformation of the stiffness matrix for a ‘skew’ 

support 

Now we are explaining ways of transforming an element stiffness matrix joined 

to a support node by means of a ‘skew’ support (Figure 13d). We choose the coordinate 

system x'y' in such a way that the direction of a support reaction covers the y' axis and 

the movement will be parallel to the x' axis (an alternative choice of the local coordinate 

system is obviously possible). The x' axis is rotated with respect to the X axis of the 

global system by the angle α' which we will deem to be positive when the rotation from 

the X axis to the x' axis is anticlockwise. The positive angle α' is shown in Figure 13d. 

If we write equilibrium equations for the support node r in the system x'y', then 

the boundary condition of this support is determined by Eqn. (110). Let us try to 

perform the necessary transformation. We make use of relations Eqn. (81) and (83) 

which served us in Sec. 2.3 to pass from the local system of an element to the global 

one. 

Then we express the nodal forces vector at the node r as follows: 

F

F

c s

s c

F

F

rx

ry

rX

rY

'

'

' '

' '









 






















, 

or in an abbreviated form: 

  rrr fRf
T

''  . (115) 

 

Next we transform the nodal displacements vector of the support node from the 

local system to the global one as follows: 

u

u

c s

s c

u

u

rX

rY

rx

ry









 




















' '

' '

'

' , 

or in a close form: 
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rrr uRu  . (116) 

In Eqn. (115) and (116) we have marked 















cs

sc
rR ,  cosc ,  sins  

and  TrR  is the transpose of the matrix 
rR . 

Let us assume that an element e joins nodes ri and rj supported by ‘skew’ 

supports which are rotated by angles i   and j  (Figure 14). Then we write 

equilibrium equations for nodes ri and rj in the local coordinate system ii yx   at the node 

ri and jj yx   at the node rj. The transformation of nodal forces vectors and nodal 

displacements vectors of the element e is as follows: 

- for a nodal forces vector 

  eee
fRf

T
''   (117) 

or in a developed form 

 
  
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r
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f

R0
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f
T

T

'

'

'

'
, 

- for the nodal displacements vector 

u R u
e e e ' '  (118) 

or 





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Figure 14. The bar with ‘skew’ supports. 

 

Inserting relationship Eqn. (118) into (96) and the result into(117), we get the 

equation transforming the stiffness matrix of the element e from the global coordinate 

system to the support coordinate system: 

  eeeee '''' uRKRf
T

  (119) 

We simplify this equation to the form: 

f K u' ' 'e e e , (120) 

in which we make use of the substitution: 

  eeee ''' RKRK
T

 , (121) 

defining the element matrix in the support coordinate system. 

One of angles α' (Figure 14) is most often equal to zero because it rarely happens 

that a truss bar joins two support nodes supported by a ‘skew’ support. The 

transformation matrix of a zero angle is a unit matrix. Because (c'=1, s'=0), then the 

element transformation matrix is simplified to the form:  

R
R 0

0 I
'

'
e ri











, 
(122) 

when the second node is described in the global system but we transform forces and 

displacements at the first node ri, and 
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R
I 0

0 R
'

'
e

rj












 , 

(123) 

when the transformation concerns the last node rj only. 

As it has been shown that the existence of ‘skew’ supports complicates the 

simple FEM algorithm presented in Chapter 1 because it requires additional 

transformations of element stiffness matrices before the aggregation of the global matrix 

is done. There are some other simpler, though approximate, methods of solving this 

problem and they will be discussed in the next section concerning boundary elements. 

1.11. Elastic supports and boundary elements 

 Not all kinds of supports applied to support trusses can be described by 

the boundary conditions of types Eqn. (108), (109) and(110). There are flexible supports 

which have displacements connected with a support reaction, for instance, the linear 

relation of the following type: 

R h urX rX rX  , 

R h urY rY rY  , 

(124) 

where hrX  is the support stiffness in the direction of the X axis and hrY is the support 

stiffness in the direction of the Y axis. The linear spring shown in Figure 15is a good 

model of this type of support. 

 

 

Figure 15. The elastic support model. 

 

If we treat reactions RrX and RrY acting on the node supported elastically as 

external forces, then we obtain the nodal forces vector containing unknown 

displacements urX, urY: 
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  P1X  1   P1X   

(125) 

  P1Y     P1Y   

  P2X  2   P2X   

  P2Y     P2Y   

p=       =      

  RrX   r    h urX rX    

  RrY       h urY rY    

             

  PN Xn  
 Nn   PN Xn  

  

  PN Yn  
    PN Yn  

  

The vector p cannot be absolutely used as the right hand side of Eqn. (104) in 

which unknown values of nodal displacements should be on the left hand side of the 

equation. Now we are transforming the vector p described by Eqn. (125) in such a way 

that nodal reactions of the elastic node r will be moved to the left hand side of the 

equilibrium equation: 

K u p
s r

, 
(126) 

where s
K is the stiffness matrix containing information about elastic supports of the 

structure and 
r

p  is the nodal forces vector in which the boundary conditions written in 

Eqn. (111) (we can treat the elastic supports as fixed ones after transferring the relations 

which described them to the left hand side of the equation) are considered. 

The matrix 
s

K is written by the equation:  
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  K11  K12   K1m  
K1 1( )m   K1Nn  

  1 

(127) 

  K 21  
K 22   K 2m  

K 2 1( )m  
 K 2 Nn  

   

               

K
s   

 Km1  Km2   Kmm rXh  
Km m( )1   KmNn    r 

  K ( )1m1  
K ( )m1 2   K ( )m m1  

K ( )( )m m rYh  1 1  
 K ( )m Nn1  

   

             Nn 

  K Nn1  
K Nn 2   K N mn  

K N mn ( )1  
 K N Nn n  

   

where m is the global number of the first degree of freedom of the node r. With standard 

numbering m=(r-1)ND+1 whereND is the number of degrees of freedom of  the node. 

For a 2D truss ND=2, the number of the first degree of freedom of the node r is equal to 

m=2r-1. 

At this stage, the modified matrix s
K  contains the stiffness of elastic supports 

which are added to the terms coming from the truss element of a structure. These sums 

are located on the main diagonal of the matrix in rows describing the equilibrium of the 

node r. Such an interpretation of elastic supports leads to a convenient, although 

simplistic, way of considering fixed supports. We substitute them for elastic supports 

with very large stiffness, for example H=1×10
30

 onto the main diagonal. This method 

was formulated by Irons and Ahmad (1980) who multiplies terms lying in a suitable 

row on the diagonal of the matrix K by numbers of the order of 10
6
. After inserting a 

high value onto the diagonal, it is irrelevant to insert zeros both in rows and columns of 

the matrix K as well as rows of the vector of the right hand side p. It is very important 

for large stiffness matrices which are often stored in structures of data different from 

quadratic tables (comp. Appendix 2). The simplicity of this method ensures that it is 

commonly used in the computer implementation of the FEM algorithm instead of the 

exact method described in Sec.2.6. 

Elastic supports also suggest the use of a special support element which could 

substitute any elastic constraints and fixed supports (which should be treated as elastic 

supports with large stiffness). This support element rotated by an angle α with respect to 

the global coordinate system is shown inFigure 16. 
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Figure 16The boundary element scheme. 

 

We can easily obtain the stiffness matrix of such an element from the matrix of 

an ordinary truss element described by Eqn. (75) in the local coordinate system or 

Eqn. (97) in the global system. We do it in such a way that we substitute the stiffness of 

a bar EA/L for the stiffness of the elastic boundary element kb. In general, the node o of 

this element is always fixed, so we can remove it from the set of equations which allows 

us to treat the boundary element as an element with two degrees of freedom: 

K
b

bk
c sc

sc s












2

2

, 

(128) 

where similarly to Eqn. (78) cosc , sins . 

When we want to substitute the fixed support for this element we accept kb=H. 

The value of H depends on the computer system in which the program will be started 

and most of all it depends on the type of real numbers. We can take for example 

H=1×10
30 

as reference for many systems. 

1.12. The nodal loads vector with temperature load 

As we have already noted in the introduction to this Chapter, truss loads which 

act on elements and do not act on nodes directly are temperature loads. Now we will 

show how we can replace this load by known loads, that is, concentrated forces acting 

on the nodes of a structure. 
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Figure 17. The element extension caused by temperature. 

 

As we know, the increase in temperature of an element causes it to lengthen 

which, with the assumption of a steady increase in the temperature of the whole bar, is 

described by the equation: 

ott t
L

L



  , (129) 

where αt is the coefficient of thermal expansion of the material from which the element 

is made, Δto stands for an increment of temperature in the middle fibres (joining centres 

of gravity of  cross sections of an element). 

We assume a steady increase in temperature in the whole section and 

homogeneity of the material. If we accept that the element has no freedom to grow but 

is limited by fixed nodes, we obtain an axial force which is set up within the element: 

   
A A A

AAA AtEdtEdEdN otottt  , (130) 

where E is Young’s modulus of the material and A signifies the surface area of the cross 

section of the element. 

The nodal forces vector of the element due to the temperature, written in the 

local coordinate system xy, is equal to: 
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' ot

et tEAf , (131) 

after transformation to the global system, with the help of relation Eqn. (92)we obtain 
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tEA ot

et f , (132) 
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where, cosc , sins ,α - is the angle determining a slope of the loaded element 

with respect to the global coordinate system. 

Since forces acting on the nodes are necessary for the equilibrium equations, and 

as it is known, they are of opposite direction to other forces acting on elements, then we 

subtract them from other forces while building the global nodal forces vector. This is 

shown inFigure 18. 

P1X 1

P1Y

P2X 2

P2Y

 

 

Pn Xi ni

Pn Yi

 

p=  

Pn Xj

njPn Yj

 

 

PN Xn

Nn

PN Yn

PiX
t

i

f
et
=

PiY
t

PjX
t

j

PjY
t

Global number of the

last node of an element

Global number of the

first node of an element





 

 cosot

t
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t
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t

jY tEAP   

Figure 18. The temperature load included into the nodal load vector. 
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1.13. The geometric load on a truss 

The final type of truss load, which we will describe, is the geometric load 

(forced displacements of nodes). 

We assume that the node r is displaced by the vector d (Figure 19). It is 

necessary to apply forces to the node to cause this displacement. Values of these forces 

are not known, whereas we know components of the displacement of the node r: 

u drX X
, 

u drY Y
, (133) 

where dX, dY are the components of the vector of the forced displacement d.  

 

  

Figure 19. The scheme of the geometric load acting on the truss. 

 

Eqn. (133)is like the known equations of the boundary conditions (108)and 

(109)but with one difference, here we have obtained nonhomogeneous equations. It 

changes the procedure of symmetrisation of the stiffness matrix. Previously we inserted 

zeros into suitable columns of the matrix K which did not induce any consequences 

because this matrix was multiplied by zero values of displacements of the support 

nodes. At this time we have to keep the components of the matrix occurring in this 

column because they are multiplied by given displacements (comp. Eqn. (133)) and 

they are usually not equal to zero. 

Hence transformations of the stiffness matrix K and nodal loads vector p leading 

to the consideration of the geometric load should look as follows: 

We form vectors krX and krY which are suitable columns of the matrix K joined 

with the displacements of the node r. krX  is the column with a number equal to the 

displacement global number urX and krY  is the column with a number equal to the 

displacement global number urY. 
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We move the nodal forces due to the known displacements dX and dY to the right 

hand side of the set of equations: 

p p k k
d

rX X rY Yd d  
. 

(134) 

We consider boundary conditions in the standard way as in Sec.2.6. However, 

there is one difference, we put known values into the rows of the right hand side vector 

d
p . These rows have the global numbers equivalent to the degrees of freedom urX and 

urY.  

After making the above transformations, the following set of equations rises: 

K u p
r rd

, 
(135) 

where r
K is the stiffness matrix which is modified by the standard consideration of the 

boundary conditions as in Eqn. (112) and rd
p  is the modified vector d

p determined by 

Eqn. (134)after inserting known values of displacements: 

P drX X
 , 

P drY Y
. 

 

  P1X  1      1 

  P1Y         

  P2X  2      2 

  P2Y         

  :  :      : 

  :  :      : 

  PrX  nr    dX  nr 

p
d
=  PrY   -krX·dX krY·dY p

rd
=  dY   

  :  :      : 

  :  :      : 

  :  :      : 

  :  :      : 

  :  :      : 

  :  :      : 

  PNnX  Nn      Nn 

  PNnY         

Figure 20a. Preparing the geometric load vector. 
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 nr             
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 :             

 :             

 Nn             

      krX krY       

Figure 21b. The geometric load included into the nodal load vector. 

 

1.14. Support reactions, internal forces and stresses in 

elements 

After aggregation of the stiffness matrix, consideration of the boundary 

conditions and building the nodal forces vector, we obtain the set of linear equations in 

forms Eqn. (113),(126) or (135)with a positively determined symmetric matrix. 

Methods of solving such equations are described in Appendix 2. The solution of the set 

of equations is the nodal displacements vector of a structure. Knowing nodal 

displacements allows us to determine control sums of nodes and support reactions in the 

support nodes in a very simple way. And then we make use of Eqn. (104) in which the 

matrix K does not contain any information about the support constraints. 

r Ku p  . (136) 

The vector of reactions r should contain zeros at free nodes and values of 

reactions at support nodes. If we assume the occurrence of the local coordinate system 

in some nodes (the ‘skew’ supports), then the components of reactions will be expressed 

in the local coordinate system. 

Since numerical errors resulting from approaching values of numbers stored in 

the computer memory increase during the solution process, the control sums are rarely 

equal to zero and they are most often small numbers, for example the order of 110
-10

. 

Components of the global displacements vector enable the building of global 

displacements vectors for the elements (Figure 22). 

Since the components of the vector u are not always written in the global 

coordinate system (the ‘skew’ supports), then it can happen that some components of 
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the vector e
u  are expressed in the global system and others are expressed in the local 

coordinate system. To simplify further discussion we standardise the description of the 

vector bringing down the components to the global coordinate system by taking 

advantage of Eqn. (118). It should be noted that it is only necessary for elements joined 

to a node which is supported by a skew support. 
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Figure 22. The geometric load included into the global stiffness matrix. 

 

Nodal displacements of an element allow the internal force N in a truss element 

to be calculated quite easily. We can either make use of Eqn. (72) which requires 

knowledge of displacements in the local coordinate system of the element or on the 

basis of Eqn. (70), (74)and (93)we search the relationship: 
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    N
EA

L
c u u s u ujX iX jY iY   

, 
(137) 

where similarly to Eqn. (79) cosc and sins . 

Stresses in the truss element, assuming that the bar is homogeneous, are the axial 

stresses only which can be calculated using a simple relationship: 

     x jX iX jY iY

N

A

E

L
c u u s u u    

. 
(138) 

If the element is loaded with a temperature gradient, then the correction coming 

from thermal expansion of the material shown in Eqn. (137) and (138)should be taken 

into consideration: 

           x t jX iX jY iY t oE
E

L
c u u s u u L t       

 
(139) 

and 

      N A
EA

L
c u u s u u L tx jX iX jY iY t o       

. 
(140) 

The calculation of displacements, constrained reactions and internal forces in the 

element completes the static analysis of the truss. 

2. 3D truss structures 

Although 3D truss structures have been around for a long time (comp. 

Timoshenko and Goodier (1962)), they have been used very rarely until now. They are 

particularly difficult to solve. Though a series method simplifying the calculation of 

internal forces (the method of  nodal equilibrium and its graphic variant - Cremona’s 

method and the method of sections - Ritter’s method, etc. ) has been devised for 

statically determined plane trusses, in case of space trusses, only the method of nodal 

equilibrium has remained. Large sets of equations which are generated by this method 

for space trusses have discouraged engineers from designing this type of structure. 3D 

structures looking like trusses, in fact, are seldom trusses. For instance, the famous 

Eiffel’s tower or support columns of  overhead power lines, masts (in particular with the 

quadrangular crosses) are most often space frames because they keep their geometric 

stability thanks to bent elements which do not exist in classical trusses. Both the use of 

computers and new methods of statics analysis of a structure making use of new 
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technical possibilities (the finite element method is one of the main methods among 

them) have enabled considerable progress in designing space trusses. 

One of the most popular uses of these structures is in structural roofs. Examples 

of space trusses are presented in Figure 23. 

a) the space structure 

b) the tower

 

Figure 23. The example of 3D trusses. 

2.1. Notation and basic relations 

The node of a space truss has three degrees of freedom because in order to 

describe its movement, we have to give three components of a displacement vector. The 

displacement vector and forces acting on an element of the space truss are shown 

inFigure 24. As in Chapter 2 components of forces and displacements vector are 

collected in column matrices which will be called vectors; 

– nodal displacements vector of the first node i in the global coordinate system: 
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(141) 
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– the same vector in the local coordinate system: 
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(142) 

– vector of nodal forces acting at the first node i of an element written in the global 

system: 
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(143) 

and in the local system: 
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(144) 

The above vectors form forces and displacements vectors of an element: 

– vector of the nodal displacements of an element e with the node i (the first one) and j 

(the last one) is written in the global coordinate system as follows: 
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 its description in the local system is: 
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(146) 

– vector of the nodal forces of an element in the global system 
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and in the local system 
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Interpretation and meanings of the symbols used here can be found inFigure 24. 
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Figure 24. Nodal forces and displacements for the 3D truss element: a) in the 

global coordinate system; b) in the element local coordinate system. 

 

2.2. The element stiffness matrix of a space truss 

The relationship between nodal forces and nodal displacements for a space truss 

is identical to that for a plane truss if we analyse it in the local coordinate system. 

Obviously, the third force is Fiz or Fjz but the equilibrium equation of moments with 

respect to the y axis results in the zero value of this force: 

F F F F Fx ix jx ix jx      0
, 

F F F Fy iy jy iy      0 0
after considering eq. f

, 

(149) 
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F F F Fz iz jz iz      0 0
after considering eq. e

, 

Mx  0
, 

M F L Fy jz jz     0 0
, 

M F L Fz jy jy     0 0
. 

The relationship between an axial force and displacements which is identical to 

the relation presented in Chapter 2 (comp. Eqn. (72)) allows us to express the searched 

dependence as follows:  

f K u' ' 'e e e , 
(150) 

where 

K
J J

J J
'

' '

' '
e 
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, 

(151a) 
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
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

EA

L

1 0 0

0 0 0

0 0 0
. 

(151b) 

The transformation of these equations from the local system to the global one 

will be done analogously to the transformation performed in case of a 2D truss (Eqn. 

(91), (95), (96)). 

In order to complete the transformation of the element stiffness matrix to the 

global system, we need the rotation matrix of a node Ri, and then we can determine 

components of the matrix J similar to those described by Eqn.(98). 
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Figure 25. The truss element arrangement with regard to the global coordinate 

system. 

 

Since the location of the y and z axes of the local system is not essential for truss 

elements, we will choose the direction of the y axis in such a way that it will always be 

parallel to the XY plane of the global system but for bars parallel to the Z axis there will 

be an additional assumption that the y axis is parallel to the Y axis (comp.Figure 25). 

The rotation from the local coordinate system to the global one will be 

composed of two intermediate rotations. First, we rotate the system xyz to the 

intermediate system x''y''z'' selected so that the x'' axis is parallel to the XY plane and 

next we rotate the system x''y''z'' by an angle γ so that the x'' and X axes are parallel. The 

first rotation around the y axis gives the following result: 

u

u

u

c s

s c

u

u

u

x

y

z

x

y

z

''

''

''



















































 

 

0

0 1 0

0
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or in a shorter form uRu   , (152) 

where
L

L
c


  cos , 

L

L
s Z  sin , ijX XXL  , ijY YYL  , ijZ ZZL  , 

22

YX LLL  , 
22

ZLLL  . 
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The second rotation around the z axis leads the equations to the global system: 
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or in a shorter form uRu   , (153) 

where
L

L
c X


  cos , 

L

L
s Y


  sin ,  

when L''=0 we assume γ=0, hence 1c  and 0s . 

The composition of both rotations which means putting Eqn. (151) into(152), 

gives the searched rotation matrix of a node 

u R R ui i i i   '
, (154) 

where  iii RRR  . 

After multiplying matrices  ii RR , we obtain the final form of the rotation 

matrix Ri: 
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(155) 

We calculate the transformation of the block J of the element stiffness matrix of 

the space truss from the local coordinate system to the global one as in Chapter 2 

(comp. the similar transformation of the stiffness matrix Eqn. (95)) 

 J R J R i i'
T

. 
(156) 

Inserting relations Eqn. (150b) and (154) into the above equation we obtain: 
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After the introduction of a convenient notation: 

C
L

LX
X


 , 

C
L

LY
Y


 , 

C
L

LZ
Z


 

(158) 
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which are called direction cosines of an element, we obtain a very simple form of the 

block J  of the stiffness matrix: 


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
2

2

2
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CCCCC

L

EA
J . (159) 

Relation Eqn. (158) obtained after being inserted into Eqn. (151a) gives us the 

element stiffness matrix for the space truss in the global coordinate system. 

2.3. The vector of temperature loads for an element of 3D 

truss 

Since forming a loads vector of a truss for concentrated forces is identical to 

forming it for a 2D truss, we will also not discuss the vector p. On the other hand, we 

will discuss the vector of nodal forces due to a temperature load. Components of this 

vector in the local coordinate system are identical (apart from the correction in reference 

to the third component of the vector!) to the components of the vector for a plane truss 

Eqn.(131). 
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The transformation to the global system proceeds in agreement with Eqn. (92) in 

the following way: 

f R f
et e et ' , (161) 

where e
R  is the element rotation matrix: 

R
R 0

0 R
e i

j





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




. 
(162) 

Since a truss element is straight, Ri=Rj, where the matrix Ri is defined by 

Eqn. (154). 

After inserting Eqn. (154) into (160) and multiplying them, we obtain 
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or in another form: 
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The remaining procedure is identical to the one employed in case of a plane 

truss. 

2.4. The boundary element 

In Chapter 2, we explained widely different types of boundary conditions and 

also elastic boundary elements. Since they are very useful elements for modelling many 

different boundary conditions, we will pay more attention to them in this chapter 

concentrating on differences between plane and space trusses. 

We will discuss the most general elastic element with stiffness kb dropping with 

respect to axes of the global system with the angles αX, αY, αZ whose direction cosines 

are equal to 

cX X cos , cY Y cos , cZ Z cos . (165) 

The stiffness matrix of this element in the local system is analogous to the 

matrix stiffness of an ordinary truss element but this element has three degrees of 

freedom, so the stiffness matrix contains only one block J (Eqn. (151b) 
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0 0 0
. 

(166) 

Transforming this element to the global coordinate system we obtain a matrix 

which is very similar to the one obtained in Chapter 2 for a plane truss: 
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(167) 

Boundary elements can form for example, an element with three different types 

of stiffness kx, ky, kz parallel to axes of the local system xyz: 

K 'b
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(168) 

The transformation of this matrix to the global system is analogous to the 

transformation of the block JEqn.(156) discussed earlier. We do not give the result of 

this transformation here leaving its execution as an exercise for the reader. 

2.5. Stresses and Internal forces 

As in Sec.2.11 of Chapter 2, we present here equations to calculate stresses and 

internal forces in an element: 

         x t jx ix t oE
E

L
u u L t     

, 
(169) 

or in another form: 

  x
e

t o

E

L
E t  1 0 0 1 0 0 u' 

. 
(170) 

The transformation of the vector 
e

u  to the global system gives the relationship: 

   ot

ee

x tE
L

E
  uR

T
001001  (171) 

which, after multiplication, gives components of direct stress in an element as follows: 
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ee

x t
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TTT  (172) 

where c is the vector of element direction cosines:  ZYX ccc     T
c  (158). 

Calculating the normal force consists of integrating stresses on the surface of a 

cross section with an assumption of homogeneity of the stress field (as in Chapter 2) 
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ee
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. (173) 
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The remaining support reactions are calculated with the help of Eqn. (136). We 

do it exactly in the same way as it has been done for the 2D truss, so we will not 

describe here the above problem for a space truss in detail. 

3. 2D frame systems 

The correct choice of model for a structure is very important for quality and 

exactness of the results obtained. The choice of frame or truss (for example, a truss with 

fixed nodes) is often subjective and it depends on experience and intuition of the 

analyst. 

In this chapter, we will present the following model of a bar structure - a 2D 

frame which gives more possibilities of modelling real structures. The element of a 2D 

frame is more general than a truss element presented in Chapter 2 because with help of 

this element we can also model ideal truss structures (articulated connection of elements 

at nodes). We can simply say that a frame is a structure whose bars can be bent while 

truss elements can be only compressed and stretched. It has the following consequences: 

– bar (an element) of a frame can be loaded between nodes, 

– modelling of different types of loads is possible, for example: concentrated forces, 

concentrated moments, distributed loads, 

– connection of an element with a node can be a fixed connection provided that the 

rotation of a node and of a nodal section of the element are identical or it can be an 

articulated connection when independent rotations of a node and a nodal section are 

possible, 

– node of a 2D frame has three degrees of freedom which means that we have to know 

two components of a translation vector: uX, uY and the rotation angle φZ  in order to 

determine the location of this node. 

In the case of plane frames, we will neglect index Z of rotation angles in our 

notation because all rotation angles on the plane XY (which we will use to describe the 

structure) are rotations with respect to the Z axis. Let us assume that a frame element is 

straight and homogeneous which means that it is made from a homogeneous material 

and has a constant cross section. The view of a frame element, directions, senses of 

nodal displacements and forces which we will consider as positive are presented in 

Figure 26. 
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Figure 26Nodal loads and displacements for the plane frame element: a) in the 

global coordinate system; b) in the element local coordinate system. 

 

3.1. The element stiffness matrix for a 2D frame 

We group nodal displacements and forces shown in Figure 26a,b in column 

matrices just as we did previously in Chapters 2 and 3. They are called vectors: 

 displacement vector of the first node i and the last node j in the local system (Figure 

26b) 
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 nodal forces vector in the local coordinate system 
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 element displacement vector in the local coordinate system 
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 element forces vector in the local coordinate system 
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We can also describe all the vectors formulated above in the global system: 



















i

iY

iX

i u

u



u , 



















j

jY

jX

j u

u



u , (178) 

f i

iX

iY

i

F

F

M



















, 

f j

jX

jY

j

F

F

M



















, 

(179) 





































j

jY

jX

i

iY

iX

j

ie

u

u

u

u





u

u
u ,  (180) 



75 

 

f
f

f
e i

j

iX

iY

i

jX

jY

j

F

F

M

F

F

M










 

























 . 

(181) 

As in the previous chapters, the relationship between nodal forces and nodal 

displacements will be of great importance. This relation (analogous to Eqn. (66) for a 

truss) in the local coordinate system has the form: 

K u f' ' 'e e e , (182) 

and in the global system 

K u f
e e e . (183) 

At the moment, we will concentrate on searching for the stiffness matrix e
K  in 

the local coordinate system and next its transformation to the global system. 

Equilibrium equations of the element presented in Figure 26b lead to the 

following relations between nodal forces: 

jxixjxixx FFFFF  0  ; 

0 jyiyy FFF ; 

0 LFMMM jyjii . 

(184) 

It has been shown that three equations are unable to calculate six components of 

the vector e
f  . The discussion concerning element strains will provide these missing 

equations. The deformation caused by the axial forces Fix and Fjx is identical to the 

deformation of a truss element, hence we take advantage of previously determined 

dependence Eqn. (72) and Eqn. (73a). We will obtain the remaining equations when we 

consider the flexural deformation of an element and the relationship between shearing 

forces and bending moments. The well-known relationship between curvature and 

bending moment is (comp. Jastrzębski et al. (1985)): 
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(185) 

where ρ represents the radius of a curvature, E is Young’s modulus of a material, Jz is 

the moment of inertia of an element cross section (comp.Figure 26a).  

 

 

Figure 27. The segment of the bar element with internal forces. 

 

The equilibrium of one section of a bar in bending (Figure 27) gives the 

equation: 

T x
dM x

dx
( )

( )


. 
(186) 

Since we are dealing with linear structures with small deflections, we assume 

1
dx

dy
, which simplifies Eqn. (185) to the well-known form: 

d y

dx

M x

EJ z

2

2


( )

. 
(187) 

The opposite sign of the right hand side of Eqn. (185) and (187) (comp. 

Jastrzębski et al. (1985)) to the one that we have usually assumed, comes from the sense 

of the y axis of the local coordinate system which is orientated anticlockwise in our 

assumptions. 

Differentiating this equation twice, we obtain the relationship (comp. 

Jastrzębski et al. (1985), Nowacki (1976)): 
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d y

dx

q x

EJ

y

z

4

4


( )

, 
(188) 

where qy(x) denotes the distributed load which is perpendicular to the axis of an 

element. Here the element is free from nodal loads, thus, 0yq . 

Finally, we obtain the set of differential equations: 

a) 0
4

4


dx

yd
, 

b) 
zEJ

xM

dx

yd )(
2

2

 , 

c) 
zEJ

xT

dx

yd )(
3

3

 . 

(189) 

After integrating relations Eqn. (189a) we obtain the following equations: 

– bending line of the frame element: 

y x C
x

C
x

C x C( )    1

3

2

2

3 46 2 , 
(190) 

– bending moment: 

 M x EJ C x Cz( )  1 2 , (191) 

– shearing force: 

T x EJ Cz( )  1 , (192) 

where C1 ... C4 are integration constants which should be determined on the basis of 

boundary conditions. 

We have four boundary conditions: 

– at node i , x = 0: 

iyuy )0( , 

i

xdx

dy


0

, 

(193) 

– at node j , x=L: 

jyuLy )( , (194) 
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j

Lxdx
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

. 

After inserting these conditions into Eqn. (190), we obtain the following values 

of the integration constants: 
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(195) 

Hence after putting the above equations into Eqn. (191), (192)and considering 

the senses of both nodal and bending moments (comp. Figure 26 andFigure 27), we 

obtain 
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(196) 

Finally, tabulating Eqn. (73a) and (196)in a suitable sequence we obtain the stiffness 

matrix:  
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The relationships described by Eqn. (196) are called transformation formulae of 

the displacement method in structural mechanics (in some other form) (comp. 

Nowacki (1976)). 

3.2. Transformation of the stiffness matrix from the global 

coordinate system to the local one 

The transfer of the matrix K 'e  to the global coordinate system is done according 

to rules analogous to the rules described by Eqn. (75) in Sec.2.4. In order to obtain the 

transformation matrix of an element, we need Ri that is, the transformation matrix from 

the local system to the global one for the node i. Since the third degree of freedom of 

frame nodes is a rotation with respect to the z axis which does not change its location 

because it is always perpendicular to the plane xy, the rotation will be the same as for a 

truss element: 

u u uiX ix iy cos sin 
, 

u u uiY ix iy sin cos 
, 

iiziZ   , 

or in the matrix form  
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where 
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In accordance with the assumption accepted in the introduction that the frame 

element is straight, the transformation matrix of the node j is identical to Ri which leads 

to the final form of the element stiffness matrix: 
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(199) 

After multiplying matrices described by Eqn. (95) we obtain the stiffness matrix 

of a frame element in the global coordinate system. Unfortunately, its form is rather 

complex: 
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3.3. Static reduction of the stiffness matrix 

Frame elements are not always joined at a node ensuring the agreement of all 

nodal displacements and displacements in the bar section at this node. Articulated joints 

shown in Figure 28are examples of such incomplete connections. 
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Figure 28. The element joint scheme with one element able to rotate (an 

articulated joint). 

 

At this joint, the angle of the nodal rotation does not influence the rotation of the 

element section of a node. The latter can rotate independently of the node (the element 

e2 in Figure 28). 

We determine the unknown angle of the rotation of such an element using an 

additional equation which is given by the equilibrium condition of moments in a joint. 

Hence we can reduce the number of degrees of freedom of the element because the 

additional equilibrium condition allows us to eliminate one displacement from the set of 

equations. We will show the way to eliminate the degree of freedom using the example 

of two types of connections of an element with a node. 

Example No 1 - articulated connection (Figure 29). 

 

 

Figure 29. The element with the articulated i node joint. 

 

Additional equilibrium condition of a section at the node i : 

Mi = 0, (201) 

leads, after considering Eqn. (175), (182)and(197), to conditions: 
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and thus we calculate the required value of the rotation angle of the section at the node 

i: 
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After putting this result into Eqn. (182) and taking into consideration matrix 

(197) we obtain: 
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and hence the new stiffness matrix of an element with the joint at the node i:  
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Superscripts (3,i) in the notation of the stiffness matrix indicate that the third 

degree of freedom is eliminated at the first node. 

Example No 2 - moveable connection ( 

Figure 30) 

 

 

Figure 30. The element with the j node translation possibility. 

 

Here the additional condition is the disappearance of the axial force at the node 

j: 

Fjx = 0, (206) 

which after analogous transformations leads to the equation: 

Fix = 0, (207) 

and it does not change the relations for the remaining nodal forces. 

The stiffness matrix of such an element takes the following form:  
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Superscripts (1,j) in the notation of this matrix indicate that the first degree of 

freedom at the last node of an element has been eliminated. 

The above process is called the static reduction of a stiffness matrix. Now we 

will give the matrix notation of an operation leading to a reduced stiffness matrix. For 

the sake of simplicity, we assume that the last degree of freedom of an element is the 

eliminated degree of freedom. Nodal forces, nodal displacements vectors and the 

stiffness matrix are divided into blocks: 

                

(209) 

 f1   =   K11   K10     u1   ,  

                

 f0      K 01   K 00     u0     

where according to the symmetry of the matrix we have 

T

1111 KK   , T

1001 KK  , 

00K  is the matrix with dimension 1×1 and thus it is a scalar, the blocks 0f  and 0u  are 

also scalars. The results of the multiplication of matrix blocks Eqn. (209)are: 

a) 0101111 uKuKf  , 

b) 00001010  uKuKf   scalar. 

(210) 

From Eqn. (210b) we calculate 
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and after inserting this relation into (210a) we obtain 
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, (212) 

or 

f K u1 1 ' ' , (213) 

where 
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is the condensed element stiffness matrix. 

Vector 1f  of an element load still remains to be determined. We obtain it by 

composing both the load vector o
f  of an element with rigid connections with nodes and 

the vector u
f  of the load caused by displacements of nodes free from constraints  
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Since 

f f f0 0 0 0  o u

, (216) 

then 

f f K u K u0 0 01 1 00 0
u o o o   , (217) 

and hence 

 u K f0 00

1

0
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because other displacements contained in 1u  are equal to zero. Finally, we obtain 

 f f K K f1 1 10 00

1

0 
o o o o

. 
(219) 

In this way, we can eliminate any degree of freedom but it requires some more 

complex transformations. We leave this problem to be solved by the reader. 
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3.4. Boundary conditions of plane frame structures 

Supports for plane frames include articulated and fixed supports all listed in 

Chapter 2. The latter ones prevent the rotation of a support node. Symbolic notation of 

these supports and the boundary conditions describing them are shown in Figure 31. 

Considering boundary conditions requires the modification of a global stiffness 

matrix of a structure and it is done identically as for a plane truss (Sec.2.6), thus, we 

will not describe the way of modifying this matrix here. A whole range of other 

supports such as moveable skew supports and elastic supports considered analogously 

to supports of trusses described in Chapter 2 is also possible. 

As a general method of consideration of non-typical supports, we propose to 

consider the use of suitable boundary elements instead of these supports. We will 

discuss this in the next section. 
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Figure 31. Plane frame support types. 
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3.5. Boundary elements of 2D frames 

Introducing a boundary element is a convenient way to avoid problems 

connected with the consideration of different, non-typical boundary conditions. It 

allows, in fact, us to model fixed and fixed-movable supports with approximate 

exactness and to substitute elastic supports. 

Now we will present a single elastic support inclined at some angle. The scheme 

of this element and notations used are shown inFigure 32. 

 

 

Figure 32. The plane frame elastic support scheme. 

 

Stiffness of springs: hrx and hry are forces which should be applied to their ends 

in order to induce unitary extensions. Rotation stiffness of a support gr is a moment 

necessary to induce the rotation of the node r equal to one radian. 

The stiffness matrix of such an element in the local coordinate system has the 

form: 

K
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(220) 

Its transformation to the global system is done analogously to the case of normal 

frame or truss elements except that it concerns one node only Eqn. (95). The rotation 

matrix is given by Eqn. (188). Hence we can write the equation transforming the matrix 

K 'b to the global system: 

T

r

b

r

b
RKRK ' . (221) 

After taking into consideration Eqn. (188)and (220)we obtain 
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(222) 

where sins  , cosc . 

If we model flexible supports we ought to assume high stiffness of a suitable 

spring. In most cases, stiffness of the order of 1×10
30

 assures similarity between results 

obtained with this method and the results obtained with the exact method. 

3.6. Internal forces due to a static load 

The variety of loads which can act on a frame structure is considerably greater 

than it was in the case of a truss. Frame elements can be affected by concentrated 

(forces, moments), distributed (pressure, moment loads) and temperature loads. The 

formulation of equilibrium equations requires substitution of internode loads for an 

equivalent set of concentrated forces and moments acting on nodes. The way of 

reducing these loads will be the subject of our discussion in this section. 

Eqn. (190) and (195)define displacements of an element bending in the direction 

of the y axis of the global system. After adding the equations describing the 

displacements in an axial direction, we obtain relations defining the displacements 

vector for any point between nodes 
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where N is the rectangular matrix of shape functions. It contains two blocks: Ni(x) - 

matrix of the shape functions for the first node and Nj(x) - matrix of the shape functions 

for the last node. 

      N N Nx x xi j
. 

(224) 

We can obtain both matrices from Eqn. (190) and (71): 
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where non-dimensional displacement functions  i (i = 1,2 ... 6)) and their derivatives 

 


i ,  


i  are surveyed in Table 4. The convenient non-dimensional coordinate

Lx /  is introduced here. 

Let us consider now the bar (an element) of a plane frame loaded with static 

loads (Figure 33). 

 

 

Figure 33. The plane frame element loaded with static loads. 

 

We will find nodal forces e
f  by making use of conditions of element 

equilibrium. We will use the principle of virtual work here: 

  ee

nL uf
T

'  (226a) 

where Ln is the work of nodal forces, 

             

L

oxxyyz dxxxmxuxqxuxqL
0

  (226b) 

where Lz is the work of external forces (static loads). 

 

 

Table 4.Non-dimensional displacement functions. 

6
 

- 
ξ2

(1
 

 ξ
) 

 

- 
ξ(

2
 

 3
ξ)

 

 

- 
2
 +

 6
ξ 

 



90 

 

5
 

ξ(
1

 -
 2

ξ 
+

 ξ
3
) 

 

1
 -

 4
ξ 

+
 3

ξ2
 

 

- 
4

 +
 6

ξ 

 

4
 

ξ2
(3

 
 2

ξ)
 

 

6
ξ(

1
 

 ξ
) 

 

6
 

 1
2

ξ 

 

3
 

1
 

 3
ξ2

 +
 2

ξ3
 

 

- 
6

ξ(
1
 

 ξ
) 

 

- 
6

 +
 1

2
ξ 

 

2
 

ξ 

 

1
 

 

0
 

 

1
 

1
 
ξ

 

 


1
 

 

0
 

 

N
r 

ω
i 

ω
i g

ra
p
h
 

ω
iʹ 

ω
iʹ 

g
ra

p
h
 

ω
iʺ

 

ω
iʺ

 g
ra

p
h
 

 

Concentrated forces and moments can also be analysed by describing them in 

the following way: 

Pxxxq o )()(   ,      
ooo MxxM )(  , (227) 

where δ(xo) is Dirac’s delta defined as (comp. Nowacki (1979)) 

,0)(  oxx  while oxx  ; 

,)(  oxx  while oxx  ; 

,0)(  oxx  while oxx 
 

(228) 
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and   1)( 




dxxx o
 
. 

The element equilibrium is maintain when Ln+Lz= 0, which means 

      
L

ee dxxx
0

uquf
TT

, (229) 

where q(x) is the vector of external loads: 
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 
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
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
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xq
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y

x

q . (230) 

Putting the expression describing the element displacements vector Eqn. 

(223)into (229)we obtain relations: 

  
L

eee dx
0

uNquf
TT

, (231) 

  
L

e dx
0

qNf
T

, (232) 

which enables us to replace loads acting on elements by loads acting on nodes. It should 

be noted here that there are forces acting on the nodes in the equilibrium equations and 

that these forces act against those acting on the element (comp. Figure. 18) thus, they 

should be subtracted from the nodal forces vector of the structure. 

We check the effectiveness of Eqn. (232) for three simple examples when: 

1. the load with a concentrated force is applied to the centre of an element, 

2. the load with a concentrated moment, 

3. the distributed load which is constant for the whole element. 
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Example No 1. 

 

 

Figure 34. The frame element loaded with a concentrated force. 

 

We introduce a non-dimensional coordinate Lx /  to make the calculations 

more convenient and write the concentrated force as follows: 
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which means that 
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Example No 2. 

 

 

Figure 35. The frame element loaded with a concentrated moment. 

 

We write the concentrated moment applied to the centre of an element by using 

Dirac’s delta: 
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After inserting the load vector into Eqn. (232), we obtain 
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Example No 3. 

 

 

Figure 36. The frame element loaded with a uniformly distributed load. 

 

The continuous load uniformly distributed on the whole length of an element 

gives a load vector: 
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After inserting the vector  q  into Eqn. (232), we obtain the equation: 
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which means that 

0ixF , LqF oiy
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1
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1
 , 
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1
 , LqM oj

12

1
 . 

3.7. Forces caused by a temperature load 

The action of a temperature on frame elements can cause flexion. This happens 

when the temperature field is not homogeneous in the cross section. In the case of a 

truss, the flexion of bars did not cause increasing nodal forces because truss elements 

are connected by means of jointed nodes. Bars of frame structures can make a node 
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rotate, hence we have to determine forces at the node in the element undergoing the 

action of the non-uniform temperature field. 

 

 

Figure 37. The temperature distribution in the element cross section. 

 

Let us consider an element of which the upper fibres are affected by an increase 

in a temperature Δtg, and the lower fibres are affected by an increase in a temperature 

Δtd (Figure 37). The temperature field can be written as follows: 

       t x y t x
y

h
t xo h,  

, 
(233) 

where  dggdo ytyt
h

t 
1

 is the increase in the temperature of the middle 

fibres, dgh ttt   is the difference of temperatures between extreme fibres, h is the 

height of the cross section, yd is the distance between the centre of gravity and the lower 

fibres, yg is the distance between the centre of gravity and the upper fibres. 

Strains of the element fibres induced by the temperature field are equal to 

     t t t o hy t y t t
y

h
  









  

, 
(234) 

where αt is the expansion coefficient of the material. 

If bars cannot deform freely, then stresses rise inside them: 

  x t t o hE E t t
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h
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which the internal forces result from: 
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
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x ydA
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t
dAtEdAN  . (236) 
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Since the second integral occurring in Eqn. (236) is the static moment with 

regard to the z axis which crosses the centre of gravity, this moment has to be equal to 

zero. Thus, we obtain 

   EAxtxN ott   , (237) 

like in the case of a truss element. 

The second internal force caused by temperature stresses is the bending moment: 

       
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 
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A A

h
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otxt dAy
h

t
ydAxtEydAxxM 2 . (238) 

The first integral in the above equation has to be equal to zero similarly to Eqn. 

(236), and the second one is the moment of inertia of the cross section calculated with 

regard to the middle axis. Thus, we can write an equation describing the bending 

moment due to temperature stresses as 

 
 

z
ht

t EJ
h

xt
xM





, (239) 

where 
A

z dAyJ 2
 is the moment of inertia of the element section with regard to the z 

axis crossing the centre of gravity of the section. 

We calculate forces at nodes making use of the principle of virtual work just as 

we did in Sec.4.6: 

    
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(241) 

is the vector of the internal forces induced by a temperature. The zero value of the 

expression in the second row of the vector comes from the fact that the temperature 

does not cause shearing forces in the elements, ε(x) is the vector of displacements 

gradients: 
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B is the matrix of derivatives of shape functions: 

 B B B i j . 
(243) 

On the basis of Eqn. (225) we calculate 
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(244) 

where  i ,  


i ,  


i  (i = 1,2 ... 6)) are nondimensional functions given 

inTable 4. 

On the basis of Eqn. (240) we calculate components of the nodal forces vector: 


L

t

et dx
0

tBf
T . (245) 

After inserting matrix Eqn. (244)into Eqn. (245), we obtain 
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where 1  and 2  are non-dimensional coordinates at both the beginning and end of the 

action interval of the temperature load (Figure 38). 

 

Figure 38. The temperature loaded frame element. 

In the case when the temperature load is constant and occurs along the whole 

length of the element, we obtain the following equation from Eqn. (225): 
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Both Eqn. (225)and (226) describe internal forces acting on the element. So 

when we form the load vector of a structure we should subtract components of this 

vector from suitable components of the global vector.  
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Statics of a 3D frame system 

A three-dimensional frame structure is the most general type of bar structures. 

Elements of a space frame can serve for modelling of all the previously described 

structures (2D and 3D trusses, 2D frames) and some others such as grillworks, beams 

broken in a plane and loaded perpendicularly to its plane, etc. A few examples of 

structures which cannot be modelled by elements presented so far but can only be 

modelled with the help of 3D frame elements are presented in Figure 39.  

 

 

Figure 39. The 3D frame examples. 

 

3.8. The element stiffness matrix of a 3D frame 

Any node of a space structure has six degrees of freedom which means that it 

can submit to three independent displacements and three rotations. Hence a frame 

element has twelve degrees of freedom. Components of both nodal forces and 
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displacements of the frame element are shown in Figure 40. The local coordinate 

system has to be chosen in such a way that axes y and z are the principal axes of a cross 

section because it simplifies the discussion of a bending of problem. Bending of such an 

element can be analysed as two independent phenomena of bending in planes xy and xz. 

 

 

Figure 40. Nodal loads and displacements for the 3D frame element in the 

element local coordinate system. 

 

Here we will present nodal displacements and forces similarly, that is, in the 

form of vectors (column matrices). 

The nodal displacement vector of an element in the local system is: 

u
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where 
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i'u  is the displacement vector of the node i in the local coordinate system, 
j'u  is the 

displacement vector of the node j in the local coordinate system. 

The nodal force vector of an element in the local system is 

f
f

f
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'

'
e i
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, 
(250) 

where  
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

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(251) 

i'f  is the force vector of the node i in the local coordinate system, j'f  is the force vector 

of the node j in the local coordinate system. 

As usual we look for the relationship between nodal forces and displacements in 

the form: 

f K u' ' 'e e e , (252) 

where the stiffness matrix e
K  is a square and symmetric matrix with dimensions 

12x12. Most components of this matrix can be calculated on the basis of the results 

obtained for a 2D frame in Chapter 4. Since the bending in principal planes of the cross 

section is independent, we will split the deformation of the element of a three-

dimensional frame into a few simpler form: 

 axial tension which is identical to that in a truss, 

 bending in the xz plane which is similar to the states of a 2D frame; modifications 

concern the signs of internal forces, 

 torsion. 



102 

 

Torsion of a frame element is a state which has not been described so far. The 

dependence between a nodal torsion moment and a torsion angle of an element is quite 

simple (comp. Jastrzębski et al. (1985)) and resembles the relation between an axial 

force and an element extension: 

 x x

L

M

GC


, 
(253) 

where ixjxx   is the increase in the torsion angle due to the torsion moment Mx , 

)1(2 


E
G  - is Kirchhoff’s modulus and C is the torsional resistance characteristics. 

The constant C has the dimension of a moment of inertia and is equal to the 

polar moment of inertia for circular-symmetric sections (comp. Jastrzębski et al. (1985)) 

but for other sections it should be calculated by use of quite complex methods (comp. 

Timoshenko and Goodier (1962)). The calculation method of this constant for a few 

popular cross sections in engineering practice is given in Appendix 3. 

Eqn. (253) allows us to write the relation between the nodal rotations around the 

x axis and nodal torsion moments: 

 M
GC

Lix ix jx  
, 

 M
GC

Ljx ix jx   
. 

(254) 

The above equations are the searched relation which allows us to write the 

element stiffness matrix. Senses of nodal forces caused by unitary nodal displacements, 

which allow us to determine signs of the expressions of the stiffness matrix, are shown 

in Figure 41.  
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Figure 41. The signs of the nodal force vector caused by unitary nodal 

displacements. 
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The element stiffness matrix is presented by equation 

 (255) 

3.9. Tranformation of the stiffness matrix to the global 

coordinate system 

The element stiffness matrix should be transformed to the global system. The 

transformation method of the matrix of a frame element is analogous to the 

transformation of an element of a 3D truss presented in Chapter 3 but the third rotation 
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around the x axis of the local system is necessary in order to lead axes y and z to the 

position of the principal central axes of inertia of an element cross section. Such a 

choice of local axes is very important for building the stiffness matrix which has been 

noted at the beginning of this chapter. The location of an element in space, applied types 

of coordinate systems and rotation angles notations are presented inFigure 42. 

 

 

Figure 42. The frame element arrangement with regard to the global coordinate 

system and the notation of basic vectors. 

 

In Figure 42the following notations are used: ex, ey, ez as basic vectors of axes of 

the local coordinate system and EX, EY, EZ as basic vectors of axes of the global 

coordinate system. They will be helpful in subsequent transformations. 

3.9.1. Use of the rotation angle α for building the transformation 

matrix 

Now we perform the transformation of a certain displacement vector u'i from the 

local system to the global one by the composition of three rotations: 

  u R R R ui i    '
, 

(256) 

where 
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0

0

001

R , (257) 
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is the rotation matrix around the x axis by an angle α, 

R

 

 
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



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







c s

s c

0

0 1 0

0
, 

(258) 

is the rotation matrix around the y' axis by an angle β, 

R 

 

 

















c s

s c

0

0

0 0 1
, 

(259) 

is the rotation matrix around the z'' axis by an angle γ. In Eqn. (257), (258)and (259)we 

have  cosc ,  sins ,  cosc ,  sins ,  cosc  and  sins . Eqn. 

(256) can be written in a simpler way: 

u R ui i i ' , (260) 

where  RRRR i  is the transformation matrix and the inverse relation is: 

  iii uRu
T

 , (261) 

where        TTTT

 RRRR i . 

With this method of transformation, functions of angles γ and β can be 

determined on the basis of nodal coordinates of an element (they depend on direction 

cosines of an element - comp. Sec.3.2) and the angle α is an additional parameter which 

has to be given for all elements. 

3.9.2. Use of a direction vector 

Here we will present another way of determining the transformation matrix. Let 

an additional parameter determining an element be a direction vector ey (Figure 42) 

which is located on the y axis of the local system and its modulus is equal to unity (such 

a vector is called a basic vector or a versor of an axis). Hence we have: 

 vector of the x axis of the local system determined on the basis of element 

coordinates (its components are direction cosines of the element) 

e x
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(262) 
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 given direction vector of the element 

e y

yX

yY

yZ

e

e

e



















. 

(263) 

We look for the third basic vector ez which allows us to write the transformation 

of any vector from the local coordinate system xyz to the global one XYZ. 

Since the system xyz is the right cartesian coordinate system, then the versors of 

this system are orthogonal. Thus, we can write 

e e ez x y 
, (264) 

and from here we calculate  

e z

zX

zY

zZ

e

e

e



















, 

(265) 

where 

e
e e

e ezX

xY xZ

yY yZ



, 

e
e e

e ezY

xX xZ

yX yZ

 

, 

e
e e

e ezZ

xX xY

yX yY



, 

(266) 

are the coordinates of the versor of the local z axis with regard to the global coordinate 

system. 

Since any vector can be presented as a sum of products of its coordinates and 

versors, then we obtain: 

u e e e   u u ux x y y z z  u e e ex xX X xY Y xZ ZE E E  
 

   u e e ey yX X yY Y yZ ZE E E     u e e ez zX X zY Y zZ ZE E E
 

    u e u e u ex xX y yX z zX XE  u e u e u ex xY y yY z zY Y  E
 

   u e u e u ex xZ y yZ z zZ ZE , 

(267) 

or less 

u R ui i i ' , (268) 

where Ri is the rotation matrix of a node 
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(269) 

3.9.3. Use of a direction point 

The necessity to give the direction vector in the form Eqn. (263)often causes 

difficulties during data input. Here we present one of the possibilities of simplifying the 

way of passing the direction of an element axis which is used in the Autodesk 

Simulation Mechanical (ALGOR) system. The 3D frame element is determined by three 

points (i - the first node, j - the last node, k - the direction node). The points i, j, k 

determine a plane in the three dimensional space. The axis y of the local coordinate 

system is in this plane. The x axis is determined by the line passing through points i, j. 

We find coordinates of versors for such a definition of directions of the local axes. Let 

Xi, Yi, Zi denote coordinates of the point i in the global system. If analogy, we denote 

coordinates of points j and k, then the element coordinates in the global system are 

equal to 

ijX XXL  ,  ijY YYL  ,  ijZ ZZL  ,  
222

ZYX LLLL  , (270) 

and from here we calculate the components of vector ex: 

L

L
e X

xX  ,  
L

L
e Y

xY  ,  
L

L
e Z

xZ  . (271) 

We form the vector v connecting the point i and the direction point k (Figure 

43): 
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Figure 43. The direction point application to determine the y axis of the local 

coordinate system. 

 

The vector product of the vectors ex and v give a vector which is perpendicular 

to the xy plane. This vector will be the versor ez: 

vew  x , (273) 

w
e e

v vX
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w
e e

v vY
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(274) 

e zX
Xw

w


, 
e zY

Yw

w


, 
e zZ

Zw

w


. 
(275) 

Now we obtain the coordinates of the versor ey from the vector product of the 

versor ez by ex: 

e e ey z x 
, (276) 

e
e e

e eyX

zY zZ
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e
e e
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. 
(277) 

On the basis of results Eqn. (271), (275)and (277) we can form the 

transformation matrix Ri as in Eqn. (269). 

3.9.4. The transformation matrix of an element 

Now we build the transformation matrix of an element. Nodal displacement 

vectors and nodal force vectors have been grouped so that we can divide them into 

blocks containing either displacements or rotations and either forces or moments 

respectively. After this operation we can transform every block independently 
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(278) 
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where iR  is the rotation matrix of the node i and 
jR is the rotation matrix of the node j. 

Since the element is straight, as it was in previous cases (2D and 3D trusses, 2D frame), 

we assume iR =
jR . 

We obtain the transformation of the stiffness matrix to the global system by 

multiplying matrices identically as in Eqn. (95). 

 Teeee
RKRK  , (279) 

where e
R is determined by Eqn. (278). The form of the matrix e

K  is too complex in the 

global system, so we will not give it. 

3.10. Boundary conditions for a 3D frame 

Boundary conditions existing in 3D frame supports are very similar to conditions 

described for two-dimensional frames. Differences concerning degrees of freedom 

which do not exist in plane frames are obvious. We elaborate only those boundary 

conditions which describe frame supports of space structures (Figure 44) and which are 

most often applied. 
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Figure 44. 3D frame support types. 

 

Modification of the global stiffness matrix (comp. point 2.6) is the way of 

considering boundary conditions just as we have done in reference to previously 

described structures. 

3.11. Boundary elements 

A choice of supports to be used in a space structure increases if we add elastic 

constraints and ‘skew’ supports. 
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As in previous chapters, we propose to use elastic and fixed boundary elements 

for modelling these constraints. In fact we can use a single element described in 

Chapters 2 or 3 of which we can compose a more complex support but for convenience 

we will show here the use of the matrix of a versatile elastic element with six degrees of 

freedom: 

K 'b
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0 0 0 0 0
, 

(280) 

where hrX, hrY, hrZ are spring rates and grX, grY, grZ are flexural (or torsion)  stiffness of 

springs. 

The transformation of this matrix to the global system is similar to the one 

presented in Chapter 4 (Eqn. (212)). Since reactions of our elements are contained in 

two independent vectors: the vector of support forces and the vector of support 

moments, then the transformation matrix has the form: 

R
R 0

0 R
b r

r





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




, 
(281) 

where Rr is the rotation matrix of the node given by Eqn. (269). After the multiplication 

we obtain the stiffness matrix of the boundary element in the global coordinate system: 

  









G0

0H
RKRK

Tbbbb
, (282) 

where H is the stiffness matrix for a movement and G is the stiffness matrix for a 

rotation: 
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(283) 

It is easy to obtain the matrix G from the matrix H changing the stiffness of 

tension of springs hrX, hrY, hrZ into the stiffness of bending springs grX, grY, grZ. 
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4. Two-dimensional elements 

Structures discussed in the previous chapters were modelled by means of bar 

structures whose equilibrium equations as well as their geometrical relationships are 

described with the help of differential equilibrium equations and whose independent 

variable is measured along the bar axis. This rather simple structure lets us get familiar 

with the essence of the FEM and convinces the reader that this method is efficient in 

solving very complex and extended problems in structural mechanics. Now, we will 

discuss surface structures such as 2D elements, plate and shell for which displacements, 

strains, internal forces are the functions of two independent coordinates. As a result, 

equilibrium equations are partial differential equations much more difficult to be solved 

than ordinary equations. 

Differential equilibrium equations for bar structures are simple enough to be 

integrated. Their exact results can be used as element shape functions. The situation is 

quite different for surface structures. Partial differential equations describing the 

equilibrium of those structures have unique solutions only for very simple problems. 

Solutions obtained by using the approximation method (for example, by expansion in a 

series) are very laborious and they require a lot of work and therefore a computer has to 

be used in order to solve a set of equations and sum series. In such a situation, a 

numerical method which assumes some simplification at the stage of formation of 

element equilibrium equations appears to be more effective. That is why the finite 

element method has brought so many significant results to continuum mechanics. It can 

be easily noticed in the example of a two-dimensional element which is the case of the 

simplest continuum. The 2D element (slab element) can be defined as a solid of which 

one dimension (thickness) is considerably smaller than the two others and whose middle 

plane (the surface parallel to both external surfaces of an element) is a plane (Figure 

45). A plate element has also such a shape but the slab element differs from a plate the 

way it is loaded. The slab element can be loaded only with the load acting in its plane 

and by the temperature dependent upon the x and y coordinates. On the other hand, the 

plate can be loaded with a force perpendicular to its surface or any temperature field. 

Plate elements will be discussed in the following chapter. 
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Figure 45. The exemplary application of a slab  2D element. 

 

4.1. Plane stress and strain 

When external surfaces of a 2D element are free and this element is thin enough, 

we can assume that 0,0,0  zyzxz   in reference to the whole thickness of the 

element. Then it is said that this is a plane stress problem. The thinner the 2D element 

(comp. Nowacki (1979), Timoshenko and Goodier (1962)), the better the approximation 

is. Hence only the components of stress shown in Figure 46 are non-zero.  
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Figure 46. Stress tensor components in plane stress. 

 

With regard to the symmetry of a stress tensor components of shear stress xy  

and yx  are equal, thus we have three independent components of stress which we 

compose in the stress vector: 
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σ . (284) 

A completely different case occurs when the component LZin Figure 45b is very 

significant, that is h<<LX, LY, LZ, and the support and load conditions are constant along 

the axis which is perpendicular to the element. The structure satisfying these conditions 

can also be analysed by applying plane state which in fact is plane strain. Since the 

cross dimension of the structure shown in Figure 45b prevents the structure deformation 

in the direction perpendicular to the cross section, the thin layer cut out from this 

structure is in the state described by the equation:  

0,0,0  zyzxz  . (285) 

0z  comes from the above equations, but the first equation allows to 

calculate the component z  on the basis of two other components of a direct stress. 

Thus, we have 

    z x y 
, 

(286) 

which allows to limit the number of searched components of the stress vector to three 

components given in Eqn. (284). 
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We also group independent components of the strain tensor in a column matrix 

which we have called a strain vector: 










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ε . (287) 

There is a relationship between vectors σ and ε described by constitutive 

equations whose form depends on the model of the material which the structure is made 

of. In this book we deal only with elastic isotropic materials which obey Hook’s law. 

Hence we can write the constitutive equation as follows: 

σ = D·ε, (288) 

where D is a square matrix containing material elastic constants described in Chapter 1. 

For plane stress, the matrix Dhas the form written by Eqn. (13). Plane strain 

requires another matrix for elastic constants which is described by Eqn. (17). 

4.2. Geometric relationships 

A certain point can move only on the plane during the deformation process and 

then the displacement vector of this point u(x,y) has two components: 

u( , )
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x y

u x y
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(289) 

Some known relations exist (Timoschenko and Goodier (1962)) between the 

components of displacement and strain vectors: 
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xy
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u

x
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,  
(290) 

which can be presented in the form: 

ε =D u(x,y), (291) 

where D is the matrix of differential operators Eqn. (35). 

4.3. The stiffness matrix of an elastic element 

Let us divide a continuum into finite elements. We will discuss only a triangular 

2D element in this book and we will choose such elements during discretization 

(Figure 47). 
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Figure 47. Nodal forces and displacements for the 2D element in the global 

coordinate system. 

 

According to assumption Eqn. (289)it is seen that every node of an element has 

two degrees of freedom and all nodal forces have two components. The local coordinate 

system xy is chosen in such a way that its axes are parallel to the axes of the global 

coordinate system. Hence distinguishing components of local and global vectors and 

matrices is insignificant. 

Now we group nodal displacements and forces in the vectors of: 

 nodal and element displacements 
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 nodal and element forces 
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Since we look for the dependence between nodal displacement and nodal forces 

vectors of an element we apply the principle of virtual work (comp. Chapter 1) which 

requires giving the relation between displacements of points lying within the element 

and displacements of nodes. Accepting errors coming from approximation, we assume 

that this relationship can be written by the function of two variables: 

kxkjxjixix uyxNuyxNuyxNyxu ),(),(),(),(     and 

kykjyjiyiy uyxNuyxNuyxNyxu ),(),(),(),(  , 

(294) 

or the general matrix form: 

ee yxyx uNu ),(),(  , (295) 

where N
e
(x,y) is the matrix of shape functions of the element: 

 N I I I
e

i j kx y N x y N x y N x y( , ) ( , ) ( , ) ( , )          
, 

(296) 

and Ni(x,y), Nj(x,y), Nk(x,y) are the shape functions for nodes i, j, k. 

Let us now assume the simplest of all possible forms of the shape function for 

the node i 

ycxbayxN iiii ),( , (297) 

where ai, bi, ci are constants which we determine on the basis of consistency conditions 

1),( iii yxN , 0),( jji yxN , 0),( kki yxN . (298) 

After inserting these conditions into Eqn. (297), we obtain the set of equations: 
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(299) 

which, after being solved, give the values of coefficients of the shape function. 

Eqn. (299) can also be written in the general form: 

Mαi = δi , where δi



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


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


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1

i

i

i







 (300) 

which, after modification depending on the change of i into j (or k), allows us to 

determine the coefficients of the shape functions for the subsequent nodes. δij means the 

Kronecker’s delta in this equation. 



119 

 

We solve the set of Eqn. (299) by the Cramer method 
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(301) 

Similarly, if we change the index i into j and we find δj
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(302) 

Finally, we have 
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(303) 

for node k. 

Constants ai, aj, ak are insignificant for further transformations (because they are 

connected with the rigid motion of a 2D element) and they can be neglected when 

solving the set of Eqn. (300). 

After determining the shape functions of the element, let us come back to its 

strains. We insert Eqn. (295)in (291): 

ε=D
eeee yxyx uBuN ),(),(  , (304) 

obtaining the dependence between the nodal displacements of the element and its 

strains. The matrix B in Eqn. (304) is called a geometric matrix and it can be expressed 

as follows: 

 B B B B
e

i j kx y x y x y x y( , ) ( , ) ( , ) ( , )
, 

where nB D
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yx 0

0

),(N  (305) 

is the geometric matrix of any node n. 

Thus, we have all components which are necessary to write an element 

equilibrium equation. We apply the principle of virtual work which says that the 
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external work (done by external forces - here nodal forces) has to be equal to internal 

work (done by stress) of a 2D element: 

  
V

Vdee
σεfu

TT
. (306) 

We transform this equation first substituting the constitutive relation Eqn. (288) 

for δ and next substituting geometric relations (304)for ε: 

        eeeeeeeeee dd uDBBuuDBuBfu  
VV

VV
TTTT

. (307) 

In this equation the nodal displacement vectors of the element being independent 

of variables x and y, are taken to the front and back of the integral. Eqn. (307) can be 

solved independently of element displacements only when 

 
V

V eeee d uBDBf
T

, (308) 

which, after comparison with the known relation, was referred to in all previous 

chapters of this book: 

f K u
e e e , 

gives us the equation determining coefficients of the element stiffness matrix: 

 
V

Vdeee
BDBK

T
. (309) 

Building the element stiffness matrix can be considerably easy if we note that 

this matrix divides into blocks: 
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, 

(310) 

in which any of them, for example Kij , can be calculated from the equation: 

 
V

Vdjiij BDBK
T

, (311) 

and others coming from analogous equations formed after suitable changes of indices 

have been made. 

The insertion of the geometric matrices Bi and Bj given by Eqn. (305) and the 

matrix D given by Eqn. (13) into (311)results in 
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(312) 

where A is the surface of a slab element and b is the its thickness. 

The above matrix is the stiffness matrix for plane stress. 

Note that matrices Bi, Bj and D do not contain components dependent on 

variables x, y, z, thus we can take them outside the integral. 

We obtain the block of the stiffness matrix for plane strain accepting the matrix 

of material constants according to Eqn. (17): 

  

 

 
K ij

i j i j i j j i

j i i j i j i j

EAb b b c c b c b c

b c b c c c b b


 

 








 
















1 1 2

1
1 2

2

1 2

2
1 2

2
1

1 2

2

 













. 

(313) 

Since the local coordinate system is assumed in such a way that its axes are 

parallel to the global coordinate system, then we do not have to transform the stiffness 

matrix. 

4.4. Element strain and stress 

We also calculate element strains. They are given by Eqn. (304) and taking into 

consideration Eqn. (305) we have 


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kjin

nxnx ub
,,
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
kjin

nyny ub
,,

 ,   



kjin

nynnxnxy ubuc
,,

 . (314) 

We see that components of the strain vector are constant within the element 

which is the consequence of the assumption of linear shape functions. This element is 

called CST (constant strain triangle). 

We determine element stresses from the constitutive Eqn. (288) and Eqn. (13) or 

(17) according to the kind of variant that we deal with. It is obvious that strains, just as 

stresses are constant within the CST element. 

4.5. A Nodal force vector for a distributed load 

Loads on slab elements can be treated as loads on plane trusses which means 

that they can be applied to the nodes of a structure. But if a distributed load acting on 
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the boundary of an element is given, then it should be converted to concentrated forces 

acting on the nodes of an element (Figure 48). 

 

Figure 48. Nodal forces representing continuous loads. 

 

Similarly, as in previous chapters, we apply the principal of virtual work giving 

the following equilibrium equation for this case: 
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where u(ξ) contains functions describing the displacement of the loaded edge and 
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q  contains functions describing the load on the edge, Lij is the length of the 

edge i-j, ξ is the non-dimensional coordinate taking zero value at the node i and value 1 

at the node j. Since we assume linear shape functions for the element, then we write the 

vector u(ξ) as follows: 
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where e

ij
N  is the matrix of shape functions for displacements of the boundary. 

      N I I 0ij
e

i
o

j
o

k
oN N N            

, 
(317) 
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After inserting relation Eqn. (316)into Eqn. (315), we obtain 
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T
, (319) 

After taking into consideration the shape functions described by Eqn. (318), we 

obtain 
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For example, let us calculate the nodal force vector due to the linear distributed 

load on the edge i-j of value qix, qiy - at the node i and qjx, qjy - at the node j. We write 

such a load with the help of a non-dimensional coordinate ξ: 
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and after inserting the above equation into Eqn. (320), we obtain 

   

   

 

 

f
e

ij

ix jx

iy jy

ix jx

iy jy

L

q d q d

q d q d

q d q d

q d q d

 

  

  

 

 







































 

 

 

 

1 1

1 1

1

1

0

0

2

0

1

0

1

2

0

1

0

1

0

1

2

0

1

0

1

2

0

1

    

    

    

    

, 

(322) 

which after integration gives 
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For a particular case when the load is constant and equal to 
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It should be remembered that the calculated forces are forces acting on the 

element. We obtain the necessary nodal forces changing the sense of vectors which 

means: 

p f
e e 

, 
(325) 

where 
e

p is the nodal force vector for the nodes touching the element e. 

4.6. A Nodal force vector due to a temperature load 

As in the previous section, we apply the principal of virtual work to calculate 

alternative nodal forces replacing a temperature load. In accordance with the features of 

a CST element we will take into consideration only a constant temperature field within 

the element. 

The suitable equation of virtual work has the form: 

   
VV

VV dd tt

ete
εDεσεfu

TTT
, (326) 

where σt is the stress field in the element which is caused by the temperature and εt is 

the strain of the element caused by the change of a temperature. 

Assuming isotropy of a 2D element we obtain 
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After inserting geometric relation Eqn. (304) into Eqn. (326), we obtain 
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For a plane stress problem this equation is simplified to the following relation: 
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where bi ... ck are coefficients of shape functions of the CST element. 

Plane strain gives a slightly different nodal force vector: 
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As in previous sections, we should change the signs of components of nodal 

forces before applying them to the nodes: 

p f
et et  . (331) 

We calculate stresses in the element undergoing the action of a temperature 

taking into consideration strains caused by the thermal expansion of the element: 
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4.7. Boundary conditions of a 2D element 

Boundary conditions of a two-dimensional structure can be treated analogously 

to the conditions in a plane truss because the nodes of both systems have two degrees of 

freedom on the XY plane. 

Hence we have: fixed supports (at the node r1 inFigure 49) and supports which 

can move along the X axis (at the node r2), next supports which can move along the Y 

axis (at the node r4) or skew supports (at the node r3). The boundary conditions for these 

supports are as follows: 

 node r1: 0
1
Xru , 0

1
Yru , 

 node r2: 0
2
Yru , 

 node r4: 0
4
Xru , 

 for noder3, where constraints are not consistent with the axes of the global 

coordinate system we propose the use of boundary elements described in Chapter 2. 

 

 

 

Figure 49. The 2D element (slab element) scheme divided into finite elements 

and supports. 
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5. Statics of plates 

Plates are one of the most commonly used elements in structures. They can be 

found in almost every building or mechanical structure. The geometric shape of a plate 

can be defined similarly to a 2D element (Chapter 6), but they differ in the way of 

loading. Plates are loaded with normal loads to their surfaces which cause bending. 

Bending is not present in the case of the deformation of the 2D element.  

Analytical methods of determining both deflections and internal forces were 

described by Euler, Bernoulli, Germain, Lagrange, Poisson and especially by Navier in 

papers which appeared at the end of the 18
th

 century described by Rao (1982). Literature 

devoted to the theory of plates is unusually rich, the books of Kączkowski (1980), 

Nowacki (1979), Timoshenko and Woinowsky-Krieger (1962) are recommended to 

interested readers. 

Many important statics and dynamics problems of plates were solved by 

analytical methods (mainly by the method of the Fourier series), but they are inaccurate 

both in the case of problems with complex boundary conditions and complicated shapes 

of plates. However, the finite element method has proved to be universal and although it 

gives approximate solutions, they are precise enough for practical applications. 

5.1. Basic assumptions and equations of the classic theory 

of plates 

We assume that these plates the assumptions of the classic theory of thin plates 

(Timoshenko and Woinowsky-Krieger (1962)): 

a) thickness of a plate is small in comparison with its other dimensions; 

b) deflections of plates are small in comparison with its thickness; 

c) middle plane does not undergo lengthening (or shortening); 

d) points lying on the lines which are perpendicular to the middle plane 

before its deformation lie on these lines after the deformation; 

e) components of stress which are perpendicular to the plane of the plate 

can be neglected. 

From point d) of the above assumptions it follows that the displacement of 

points lying within the plate varies linearly with its thickness (Figure 50): 
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129 

 

 

Figure 50. The bar segment deformation scheme. 

 

Thus stains are expressed by the relations: 
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The strain vector can be presented in the form: 

ε = -z w(x,y), (335) 

where vector  is the vector of differential operators: 
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Let us assume that there is a plane stress condition in the plate, so the stress 

vector can be determined as follows: 

σ = D·ε= zD w(x,y),  (336) 

where D is the matrix of material constants determined for plane stress (Eqn. (13)). 

Now we introduce in the expression of internal forces (moments and shearing 

forces – Figure 51)  
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a) stresses 
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b) internal forces 
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Figure 51. The distribution of stresses, external loads and internal forces in the 

plate element. 

 

The equilibrium of an infinitesimal plate element shown in Figure 51b leads to 

the set of equations: 
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(338) 

After integration Eqn. (337) taking into consideration Eqn. (336), we obtain 
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where D denotes the plate stiffness defined by the  equation 
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From the last two Eqn. (338), we obtain relations for the shearing forces: 
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Inserting the above equation describing shearing forces into the first Eqn. (338) 

we obtain 
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(342) 

It is a biharmonic partial differential equation which should be satisfied by the 

function of deflection w(x,y) within the plate. The following boundary conditions should 

be realised at the edges of the plate: 

a) w = 0, 0
n

w




 - on the fixed edge, 

b) w = 0, 0
2

2


n

w




 - on the free supported edge, 

c) Mn = 0, Vn = 0 - on the free edge. 

In the above equations n defines the direction of the line which is perpendicular 

to the edge and Vn is the reduced force introduced by Kirchhoff in 1850, described by 

Timoshenko and Woinowsky-Krieger (1962). This force joins the influence of the 

torsion moment Mns and the shearing force Qn on the free edge Figure 51b: 
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where n describes the direction of the line which is perpendicular to the edge and s is 

the direction of the line which is parallel to the edge of the plate. 

The modification of the boundary conditions is necessary here because the 

fourth order Eqn. (342) cannot be solved for three boundary conditions coming from the 

requirement of zero stress on the free edge: Mns = 0, Mn = 0, Qn = 0. 

5.2. A finite triangular element of a thin plate 

Now we show the way of building the stiffness matrix of a triangular element of 

a thin plate (Figure 52). 

 

 

a) nodal displacements    b) nodal forces 

Figure 52. Nodal loads and displacements for the plate element in the local coordinate 

system. 

 

We also introduce a few convenient notations: 

 w(x,y) stands for the function of displacement of the middle plane of an element; 

 
y

w
x




  is the rotation angle of the element about the x axis; 

 
x

w
y




   is a rotation angle of the element about the y axis. 

As seen in Figure 52, the node of a plate element has three degrees of freedom. 

Hence nodal displacement vectors of the element in the local system can be written as 

follows: 
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and an element displacement vector: 
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Directions of both nodal displacements and forces (Figure 52b) are the same, so 

the nodal forces vectors have a similar notation: 
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Hence we write the nodal force vector of the element as follows: 
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(347) 

We approximate the surface of the deformed element by the polynomial of the 

third order proposed by J.L.Tocher in 1962: 
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We determine the coefficients a1 ... a9 of the function w(x,y) from the boundary 

conditions at the nodes i, j, k: 

iii wyxw ),( , ixiix yx  ),( , iyiiy yx  ),( , 

jjj wyxw ),( , jxjjx yx  ),( , jyjjy yx  ),( , 

kkk wyxw ),( , kxkkx yx  ),( , kykky yx  ),( . 

(349) 

After calculating the rotation angles, we obtain 

2

9

2

8653 3)2(2
),(

yaxyxayaxaa
y

yxw
x 




 , 

 )2(32
),( 2

8

2

7542 yxyaxayaxaa
x

yxw
y 




 . 

(350) 

 

Now we insert Eqn. (348) and (350) into boundary conditions (349) obtaining: 

Ma u 'e , (351) 

 

where M is the square matrix dependent on nodal coordinates of the element. 
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  a1 a2 a3 a4 a5 a6 a7 a8 a9    

  1 0 0 0 0 0 0 0 0  wi  

  0 0 1 0 0 0 0 0 0  φix  

  0 -1 0 0 0 0 0 0 0  φiy  

  1 xj 0 x j
2

 
0 0 x j

3

 
0 0  wj  

M=  0 0 1 0 xj 0 0 x j
2

 
0  φjx (352) 

  0 -1 0 -2xj 0 0  3 2x j  
0 0  φjy  

  1 xk yk xk
2

 xk yk yk
2

 xk
3

 x y x yk k k k
2 2  yk

3

  wk  

  0 0 1 0 xk 2yk 0 x x yk k k
2 2  3 2yk   φkx  

  0 -1 0 -2xk -yk 0  3 2xk   2 2x y yk k k  0  φky  

 

We can present the solution of Eqn. (351) as follows: 

a M u 1 'e , (353) 

where M
-1

 is the inverse matrix of M. The solution of M
-1

 is possible when 0det M

(comp. Appendix 1) which is not always the case in our problem because  

 detM   x y x y xj k k k j
5 5 2

 
(354) 

It means that in cases when the node k of the element is on the line described by 

equation xxy j 2 , then the matrix M is singular. Thus, the problem is solved by 

changing the local coordinate system. 

Now we calculate a strain vector determined by Eqn. (335). 

ε = z w(x,y) = z 
T ee z uMBuM   11

, (355) 

where 
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T
 is a rectangular matrix of which components are equal to: 
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(356) 

Comparing Eqn. (355) with the definition of the geometric matrix e
B described 

by Eqn. (36) and (38), we obtain 
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B B M
e z   1

. (357) 

Hence we can make use of the definition of the stiffness matrix contained in 

Eqn. (50): 
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After denoting the integration in the above equation by 
K  and applying the 

definition of plate stiffness we have 
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De . (359) 

After calculating the matrix multiplication inside the integration in Eqn. (358), 

we have 
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While calculating the integration of functions exiting in Eqn. (360), the 

following relations are helpful: 

kj yxd
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(361) 
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Matrix Eqn. (358) is determined in the local coordinate system. We have to 

transform it to the global coordinate system in accordance with relation Eqn. (53): 
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(362) 

where Ri, Rj, Rk are the transformation matrices of nodes. If we use the same coordinate 

systems for all nodes (it has been done in this chapter), then we can use only one 

transformation matrix: Rj = Ri, Rk = Ri, 

R i c s

s c
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(363) 

where cosc , sins  and α is the angle between the X axis of the global system 

and the x axis of the local system (Figure 53). Value 1 in the first row of the matrix Ri is 

the consequence of a fact that axes Z and z are parallel. 



138 

 

 

Figure 53. The plate arrangement in the global coordinate system. 

 

The triangular element for which the matrix stiffness has been obtained has a 

convenient feature. Namely, it allows us to discrete plates of any shape without any 

difficulty. This element joined with a 2D triangular element can be used as a shell 

element (comp. Rakowski and Kacprzyk (1993)).  

Elements of any other shapes (rectangular or quadrilateral) are presented in the 

books written by Bathe (1996), Rakowski and Kacprzyk (1993), Rao (1982) or 

Zienkiewicz (1972, 1994). 

5.3. A triangular element of a thin shell 

As it has been noted at the previous point, an element containing 2D triangular and plate 

elements can be used as a shell element. Approximating a curved surface (which is the 

middle surface of a shell) with the help of plate elements reminds the simplification we 

apply to approach the arc with the help of a broken line. We intuitively feel that the 

smaller the curve line segments are, the better they replace the curve axis of the arc 

(Figure 54). Similarly the smaller the plane shell element dimensions and the smaller β 

angles (comp. Figure 54) of neighbouring elements are, the better this element describes 

displacements and internal forces in the structure. Detailed calculations and experiments 

confirm the correctness of this approximation (comp. Zienkiewicz (1972)). 
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

 

Figure 54. The exemplary shell division into finite elements. 

 

Connecting displacement and internal force vectors of the triangular elements 

described by Eqn. (292), (344), (296) and (346), we obtain shell element nodes 

possessing five degrees of freedom: 
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(364) 

In Eqn. (364), uiz and Fiz denote, respectively, a nodal displacement and a force 

parallel to the z axis of the local coordinate system. In Eqn. (344) and (346), these 

values are marked with wi and Qi (comp. Figure 52 and Figure 55). 
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a) nodal displacements

b) nodal forces

2D element plate
element

shell
element

supplementary
angle and moment  

Figure 55. The shell element composition of a 2D and plate elements. 

 

Simplifying the description of a node movement by disregarding the rotation 

around the axis perpendicular to the element leads to the singularity of the shell stiffness 

matrix modelled by the elements mentioned before. This difficulty is solved by 

assuming three components of the rotation and moment vectors which requires the 

evaluation of the plate element torsional stiffness. 

Since the torsional stiffness is not important in shell statics and dynamics 

problems, the fictitious value of this stiffness is often assumed (comp. Zienkiewicz 

(1972)). Hence the dependence between the torsional moments and angles can be 

presented as a variable independent of other nodal forces and displacements of an 

element: 
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(365) 

In the above relationship suggested by Zienkiewicz (1972), E is Young’s 

modulus, h is the element thickness, A is the area of a cross section and α denotes an 

indemensional coefficient which is so small that it does not have any significant 

influence on the solution of a set of equations. The value of this coefficient is assumed 

within the range 0.01÷0.001, Zienkiewicz (1972, 1994) suggests taking the value equal 

to 0.03 or less. 
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Surveying the described matrices, we obtain the stiffness matrix of the triangular 

shell element nodes having six degrees of freedom: 
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where f’i  and u’i  denote full vectors of nodal forces and displacements: 
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Every block of the stiffness matrix in Eqn. (367) consists of ‘2D element’, 

‘plate’ and ‘torsional’ parts (Eqn. (365))  

 Fix     0 0 0 0    ujx  

(369) 

 Fiy    
t
K

i j  0 0 0 0    ujy  

 Fiz  =  0 0        ujz  

 Mix    0 0 
p
K

i j      φjx  

 Miy    0 0        φjy  

 Miz    0 0 0 
-0.5 

as 

-0.5 

as 
as    φjz  

where as=αEhA describes the fictitious torsional stiffness existing in Eqn. (365), jiK
t  is 

the stiffness matrix block for the plate element (Eqn. (359)). 

Transformation of this matrix to the global coordinate system can be done in the 

way described in Chapter 5 (p.5.2.2, p.5.2.3) in which we present the transformation of 

the stifness matrix of a 3D frame element with nodes having six degrees of freedom just 

as the nodes of a shell element. The method of obtaining the components of the rotate 

matrix described at point 5.2.3 is suitable for the triangular shell element whose i and 
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jnodes determine the direction of the local x axis and the third k node can be a 

directional point. 

The shell element described above is the simplest element which enables us to 

solve any shell statics problem. There certainly are more complex elements, both plane 

and space elements with at least four nodes described in books devoted to this subject as 

Irons and Ahmad (1980), Rakowski and Kacprzyk (1993), Rao (1982), Zienkiewicz 

(1972, 1994). We must remember about the possibility of significant simplification of a 

shell element description in case of axisymmetric structures. It is also possible to use 

cone or curvelinear elements with nodes having three degrees of freedom (Rakowski 

and Kacprzyk (1993), Zienkiewicz (1972, 1994)). 

6. Brick elements 

Brick is the three-dimensional element, which can be defined as a body, to 

which all dimensions are of the same order. The shape of the body and the load is any of 

available. With brick elements, fully 3D solid constructions can be modeled. Brick 

elements can replace every other type of element, like frame, shell and plate elements. 

A solid model is divided into brick elements and the geometric shape of the elements 

can be tetrahedron, hexahedron or prism with triangle base, which means, that a brick 

element is build of triangles and quadrilateral. Typical 3D shapes of elements are shown 

in Figure 56. 

 

a)        b)       c)  

Figure 56. Three-dimensional shapes of brick elements. a) four-nodes 

(tetrahedron), b) six-nodes, c) eight-nodes (hexahedron). 

 

In this chapter we will show how the tetrahedron is regarded in Finite Element 

Method. In Figure 57 you can see how displacements and nodal forces are located. 
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Figure 57. Nodal forces and displacements for the 3D element in the global 

coordinate system. 

 

As it can be seen, in each node there are three displacements and forces in all 

global directions, but there are no rotations and moments. Vector of movements of 

element nodes and nodal forces can be written as follows: 
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6.1. Relation between strain, stress and displacements 

The brick works in a spatial state of stress. 

In Figure 46 components of stress tensor are shown. There are three components 

of normal stresses σxx, σyy, σzz, and six sheer stresses, but according to the symmetry of 

a stress tensor components of shear stress we have τxy= τyx, τxz= τzx, and τzy= τyz, thus 

we have six independent components of stress which are composed in the stress vector: 
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Figure 58. Stress tensor components. 

 

Because of the fact that the brick works in three-dimensional state of stress and 

strain, the strain vector is similar to stress vector. Relationships between the 

components of displacement and strain vectors are similar to those for 2D elements: 
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The relationship between vectors σ and εis, like in two-dimensional elements, 

described by constitutive equations.For elastic isotropic materials the constitutive 

equation is shown below: 
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σ = D·ε, (373) 

where D is the square matrix with dimensions 66 containing the material constants, 

described in Chapter 1, shown in Eqn. (7). 

6.2. Stiffness matrix of 3D element 

The stiffness matrix is the same as for all previous chapters: 

f K u
e e e  

where K
e
 has the same formula as in Chapter 6: 

 
V

Vdeee
BDBK

T
. (374) 

In case of brick element B
e
 has following formula: 

NB De
 (375) 

where N is matrix of shape function (which will be described later), Dis a matrix of 

differential operators: 
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6.3. Shape function of 3D elements 

Displacement of every point of brick element in three-dimensional coordinate 

system can be written as a function: 

zayaxaazyxux 4321),,(  , 

zbybxbbzyxuy 4321),,(  , 

zcycxcczyxuz 4321),,(  . 

(377) 
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These are displacements in every of three dimensions located in any point with 

coordinates (x, y, z). All functions are linear. 

Eqn. (377) can be written as a function depending on displacements in every of 

four nodes in tetrahedral element. Designations are related to Figure 57: 

lxlkxkjxjixix uzyxNuzyxNuzyxNuzyxNzyxu ),,(),,(),,(),,(),,(  , 

lylkykjyjiyiy uzyxNuzyxNuzyxNuzyxNzyxu ),,(),,(),,(),,(),,(  , 

lzlkzkjzjiziz uzyxNuzyxNuzyxNuzyxNzyxu ),,(),,(),,(),,(),,(  . 

(378) 

where: 

zdycxbazyxN iiiii ),,( , 

zdycxbazyxN jjjjj ),,( , 

zdycxbazyxN kkkkk ),,( , 

zdycxbazyxN lllll ),,( . 

(379) 

Eqn. (378) can be written in matrix form: 

ezyx uNu ),,(  (380) 

where u(x, y, z) is a displacement vector of any point located inside the brick element, 

u’
e
 is nodal displacement vector (Eqn. (370)), and N is stiffness function matrix. 
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Shape function for element of eight nodes can be written for any node as bellow: 

)ζ1)(η1)(ξ1(
8

1
oooiN  , (383) 
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This shape function is based on Lagrangian interpolation for the three variables 

of function passing through two points. Designations for eight-node element are shown 

in Figure 59. 

 

Figure 59. Displacements for cubic brick element. 

Now, when we have the shape function, we can return Eqn. (375), where the 

geometric matrix for nodes B
e
 can be expressed for four-node element: 
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By substituting Eqn. (379) into Eqn. (385) we can obtain a simplified form: 
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6.4. Strain and stress in element on tetrahedron example 

Now after knowing the geometric matrix for tetrahedral element, the strain 

vector can be obtained from the following equation: 

eeezyx uBuNε  ),,(D , (387) 

which is 
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where the displacement vector uʹ
e
 is described by Eqn. (370) 

Knowing the strain vector it can be used in Eqn. (288) to obtain the stress vector: 
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6.5. Rules of FEM mesh formation for 3D brick models 

Exemplary of the 3D models are shown in Figure 60. 
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Figure 60. Example of the3D brick elements use. 

 

There are some rules that are need to be followed: 

 FEM grid must take into account the shape of the structure, 

 in a hole in the model, nodes must be located so that there is no possibility to create 

a FEM element, but to form an empty area, 

 mesh nodes must be located in location of concentrated loads, 

 mesh nodes must be located in the boundary condition points, 

 the edges of the grid must be located on the border between parts of elements made 

of different materials, 

 if the job is symmetrical, the mesh also should be symmetrical. 

FEM mesh should be concentrated in areas of high stress concentration and in 

areas of rapid change in stress (high value of gradient). Such areas are located: 

 at the corners, 

 around the points of application of concentrated forces, 

 around the supports, 

If the component is narrow then in cross section there should be at least four 

belts of elements. Only then they will be able to describe the change in stress in the 

cross section. 
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Appendix 1. Matrix Algebra 

In this appendix we give the most important definitions of matrix algebra and we 

elaborate some functions and transformations of matrices which are most helpful in 

numerical applications and particularly in the finite element method. 

Definitions 

 Scalar - value determined only by its magnitude which can be expressed by a real 

number. The typical scalar values are mass, temperature, time, length, etc. We will 

denote the scalars by letters written in italic font. 

 Vector - value determined by its modulus, direction and sense. The examples of 

vectors are force, displacement, velocity and rotation. We will denote the vectors by 

small letters written in bold font. 

 Matrix- table containing most often scalars but it can also contain vectors or other 

matrices. Elements of a matrix are called components. It is a very convenient form of 

presentation of large quantities of data which we deal with in numerical methods. 

One of a matrix notation which we apply in this book looks as follows: 

 A  

















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A

A A A

A A A

A A A

ij

n

n

m m mn

11 12 1

21 22 2

1 2





   



. 

We will denote quadratic matrices (they have the same number of columns 

and rows) and rectangular matrices (they have a different number of columns and 

rows) by capital letters written in bold font. 

 Column matrix - will also be called a vector and it contains only one column. We 

will denote it just as vectors. 

 Identity matrix - square matrix components of which are equal to zero except for 

those lying on the main diagonal (diagonal elements). Diagonal elements are equal to 

1. We will mark the identity matrix by the capital letter I and in some cases by an 

index pointing dimensions of a matrix: 

I4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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
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













. 
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The components of the identity matrix can be written with the help of 

Kronecker’s delta  I   ij  where ii  1, ij  0 , when i j . 

 Triangular matrix - matrix containing either components equal to zero (L-triangular 

lower matrix) lying over the main diagonal or components also equal to zero (U- 

triangular upper matrix) lying below the main diagonal  

 L  



















L

L

L L

L L L

L L L L

ij

11

21 22

31 32 33

41 42 43 44

0 0 0

0 0

0
, 

 U  



















U

U U U U

U U U

U U

U

ij

11 12 13 14

22 23 24

33 34

44

0

0 0

0 0 0

. 

 Band matrix - matrix containing components which are different from zero only 

when they are close to the main diagonal 

Abanded

=

Band

width

0

0
p

p - width of half of the band  

After suitable grouping of equilibrium equations, stiffness matrices are band 

matrices in the finite element method. 

 Symmetric matrix - matrix with components satisfying the equation: 

   Asym  A Aij ji  

Stiffness matrices are symmetric matrices in the finite element method. 

 Transpose matrix - matrix in which we group components so that columns become 

rows: 

   jiij AB  T
AB . 

Transpose matrices are denoted by the normal capital letter T which is written 

as an upper index. 
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 The main diagonal of a matrix is the diagonal which passes from the component A11 

along other components having equal indices of a column and a row; that is 

A22 ... Aii ... Ann. 

A 



















A A A

A A A

A A A

n

n

n n nn

11 12 1

21 22 2

1 2





  



 Main diagonal

 

Matrix addition and subtraction 

 The operation of matrix addition is defined as follows: 

C A B    C A Bij ij ij , 

which means that the components of the matrix C resulting from the addition of 

matrices A and B are sums of suitable terms of matrices A and B. The matrix addition is 

possible only if both matrices (A and B) have the same number of columns and rows. 

The addition is a commutative operation: 

C A B B A    . 

Similarly, we define matrix subtraction: 

D A B    D A Bij ij ij . 

Example No 1. 

A  



















1 3 8 2

2 4 1 2

1 0 3 4

, B 

















0 2 1 0

3 2 5 1

0 2 1 3

, 

       

       

       

C A B  

   

    

    

















 



















1 0 3 2 8 1 2 0

2 3 4 2 1 5 2 1

1 0 0 2 3 1 4 3

1 5 9 2

5 6 6 1

1 2 4 7

, 

       

       

       

D A B  

   

    

    

















   

 

















1 0 3 2 8 1 2 0

2 3 4 2 1 5 2 1

1 0 0 2 3 1 4 3

1 1 7 2

1 2 4 3

1 2 2 1

. 

Multiplication of a matrix by a scalar (scaling of a matrix) 

Scaling a matrix is the name of an operation carried on its components and 

defined as follows: 

E A   E Aij ij , 
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which means that components of the matrix E resulting from the multiplication 

of the matrix A by the scalar  are products of components of the matrix A and the 

value . 

 

Example No 2. 

A  



















1 3 8 2

2 4 1 2

1 0 3 4

,  =3.5, 

E A  



















35

35 105 28 0 7 0

7 0 14 0 35 7 0

35 0 0 105 14 0

.

. . . .

. . . .

. . . .

. 

The matrix E which is the result of scaling has the same number of columns and 

rows just as the matrix A does. 

Matrix multiplication 

Let C be the result of multiplication of matrices A and B: 

C A B  , 

then components of the matrix C are results of the multiplication of rows of the matrix 

A by columns of the matrix B which can be written as follows: 

C A Bij ik kj
k

n





1

, 

where n is the number of columns of the matrix A. As it is seen the multiplication of the 

matrices A and B is possible to perform if the number of columns of the matrix A is 

equal to the number of rows of the matrix B. The matrix C which is the result of 

multiplication has the number of rows equal to the number of rows of the matrix A and 

the number of columns equal to the number of columns of the matrix B. 
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  B B B B

B B B B

B B B B

j m

j m

n n nj nm

11 12 1 1

21 22 2 2

1 2





    























 

C A B  
 

A A A

A A A

A A A

n

n

i i in

11 12 1

21 22 2

1 2























 

 

 

                  Cij 

 

Example No 3. 

A  



















1 3 8 2

2 4 1 2

1 0 3 4

, B 

















0 2 1 0

3 2 5 1

0 2 1 3

, 

T
ABC   

     0 3 0 

     2 2 2 

     1 5 1 

T
AB      0 1 3 

 1 3 8 2 10+32+81+20= 

=14 

13+32+85+21= 

=51 

10+32+81+23= 

=20 

 2 4 1 -2 20+42+11-2 0= 

=9 

23+42+15-21= 

=17 

20+42+11-23= 

=3 

 -1 0 3 4 10+02+31+40= 

=3 

13+02+35+41= 

=16 

10+02+31+43= 

=15 

 

C 

















14 51 20

9 17 3

3 16 15

. 

 

Example No 4. 

An interesting result is obtained multiplying a row matrix by a column matrix: 



156 

 

a 



















1

2

3

4

, b 





















3

2

1

2

, 

bac  T , 

  2)]2(4132231[

2

1

2

3

4321 





















c , 

The matrix c with dimensions 1×1 (so it is a scalar) is the result of this operation. 

Thus, the vector multiplication ba T is called scalar multiplication. 

The matrix multiplication is not in general the commutative operation which 

means 

AB BA   , 

even if it can be done (it is possible only for quadratic matrices). 

We will also give some more definitions concerning matrix multiplication which 

are worth memorising: 

   AB C A BC     , 

 A B C AB AC      , 

A I I A A    , 

  TTT
ABBA    . 

Determinant of a matrix 

 A determinant is the scalar function of a square matrix which we write as 

follows: 

detA  Aij . 

Calculation of the value of a determinant depends on the summation of products 

obtained from all permutations of components of the matrix A: 

 det , , ,A   1 1 2 31 2 3

I

n
p

p

n
A A A A    , 

where p denotes all permutations, Ip - number of inversions in the permutations. 

The value of a determinant can also be calculated by using Laplace’s expansion 

with regard to terms of any rows or columns: 
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detA 


 A Amk mk

k

n

1

- development of the row m  1 m n  

or 

detA 


 A Akm km

k

n

1

- development of the column m  1 m n . 

Aij  here signifies the algebraic complement of the element Aij of the matrix: 

 A Aij
i j

ij 
 1 , 

where Aij
  is the minor of the matrix  A

* * Aij  that is to say the determinant of 

a matrix which is obtained by removing the row i and the column j from the matrix A.  

Laplace’s development should be processed as long as we obtain matrices 2x2 

whose determinants can be calculated directly: 

detA   
A A

A A
A A A A

11 12

21 22
11 22 12 21 . 

The way of calculating determinants of the matrix 3x3 (Sarrus’s rule) is also 

known as 

detB  

B B B

B B B

B B B

11 12 13

21 22 23

31 32 33

 

  B B B B B B B B B11 22 33 21 32 13 31 12 23   B B B B B B B B B31 22 13 21 12 33 11 32 23 . 

Yet it should not be applied to matrices with a greater number of rows and 

columns. 

It is worth memorising the useful relation: 

 det det detAB A B  , 

which helps us to determine determinants of products of matrices effectively. 

If the determinant of a matrix is equal to zero, then such a matrix is called a 

singular matrix. 
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Inverse of a matrix 

A matrix satisfying the condition: 

AA I  1  

is called the inverse of the matrix A. 

 Components of an inverse matrix can be determined by scaling a 

transpose matrix of algebraic complements: 

 
  

A
A
A



 

  


1 1 1 1

det
 T T

T

A
A

A

Aij

ij

i j

ij

ij

, 

where  A  Aij  is the matrix of algebraic complements:  A  







1

i j

ijA , 

 Aij
  is the minor, that is, the determinant of a matrix which is formed by 

removing the row i and the column j from the matrix A. 

It is easy to note that it is impossible to find a matrix which would be the 

'inverse' of a singular matrix because it requires dividing by zero. 

The matrix A
T

 is called the joined matrix of the matrix A. The joined matrix 

can be formed for any matrix (even singular). 

 

Example No 5. 

We look for the 'inverse' of the matrix: 

A 

















9 6 2

1 9 3

7 5 3

. 

First, we calculate the determinant in order to check if the inverse operation is 

possible. We calculate the determinant of the matrix A making use of Sarrus’s rule: 

           detA                   9 9 3 1 5 2 7 6 3 7 9 2 1 6 3 9 5 3 100 . 

We calculate sequencing the algebraic complements: 

 A11
1 1

1
9 3

5 3
12  


,  A12

1 2
1

1 3

7 3
18  


, 

 A13
1 3

1
1 9

7 5
58   


,  A21

2 1
1

6 2

5 3
8   


, 
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 A22
2 2

1
9 2

7 3
13  


,  A23

2 3
1

9 6

7 5
3   


, 

 A31
3 1

1
6 2

9 3
0  


,  A32

3 2
1

9 2

1 3
25   


, 

 A33
3 3

1
9 6

1 9
75  


, 

from which we have 

A
 





 

















1

012 0 08 0 0

018 013 0 25

058 0 03 0 75

. . .

. . .

. . .

. 

Decomposition of a matrix into triangular matrices 

The nonsigular matrix A can be broken down into the product of triangular 

matrices: 

A LU  , 

where L is the lower triangular matrix and U is the upper triangular matrix. Such 

a process is called either matrix triangulation or decomposition or factorisation. 

The decomposition method was originated by M.H.Doolittle (1878) and later it 

was reconfirmed by findings of several scientists like Cholesky (1916), A.C.Aitken 

(1932), T.Banachewicz (1938) and P.D.Crout (1941). The Cholesky method was 

described by Benoit in 1924. 

The components of the triangular matrix L and U can be calculated using the 

procedures proposed by Crout or Banachewicz: 

Lii  1 , i = 1 ... n, 

U A L Uij ij ik kj
k

i

 





1

1

, j = i ... n, 

L
U

A L Uij
jj

ij ik kj
k

j

 















1

1

1

, i = j ... n. 

Calculation of components is done alternatively for rows of the matrix U and 

columns of the matrix L (the Crout method) or in succession the row of the matrix U 

and then the row of the matrix L (the Banachewicz method [18]). 

Decomposition into triangular matrices is very important in practice because it is 

applied as the effective method of solving sets of linear equations. 
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The solution of the set of equations 

Ax y  

can be obtained in two stages. At the first stage we apply substitutions A LU

andUx z  which simplify the set of equations to the form: 

 L Ux y Lz y    

which simplifies solving 

z
y

L1
1

11

 , 

 z y L z
L

2 2 21 1
22

1
  , etc., 

z y L z
Li i ik k

k

i

ii

 















1

1 1
. 

The applied procedure is called here forward elimination because we calculate 

consecutively the unknowns z1, z2 ... zi ... zn. 

The second stage depends on the determination of  unknown values from 

equations 

Ux z , 

which is done similarly to the previously used method but we have applied back 

substitution starting from the last component: 

x
z

Un
nn

nn

 , 

 x z U x
Un n n n n

n n
  

 

 1 1 1
1 1

1
, etc., 

x z U x
Li i ik k

k i

n

ii

 










 


1

1
. 

Time to solve a set of equations by this method is proportional to n
3
/3, where n 

is the number of equations. The number TD = n
3
/3 is called the cost of Doolittle’s 

method and is the estimated number of multiplication and division operations which 

should be done in order to solve a set of equations. 

Triangularization of symmetric matrices 

If the square matrix is symmetric (obviously not singular) decomposition given 

in the previous section can be simplified even more noting that: 
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T
LLA   or UUA

T . 

The algorithm of the decomposition of the symmetric matrix A into triangular 

matrices was published for the first time by Cholesky (in 1916) and then independently 

by Banachewicz (in 1938). This method is usually called the Cholesky method. In 

Poland the name the Banachewicz-Cholesky method is used in scientific publications. 

Components of a triangular lower matrix obtained by this method are equal to: 

Lij  0  for  j > i, 

L A Lii ii ik
k

i

 




 2

1

1

, 

L A L L
Lij ij ik jk

k

j

jj

 















1

1
1

 for j < i. 

In the above equations defining the components lying on the main diagonal of 

the matrix L a square root is applied. The term under the root can certainly be negative 

and then components of the matrix L are complex. It can be proved [7] that for 

positively defined symmetric matrices the components Lii are always real numbers. 

Time of the decomposition of a symmetric matrix obtained by the Banachewicz-

Cholesky method is proportional to TB-CH = n
3
/6. 

 

Example No 6. 

 Using the Banachewicz-Cholesky method, find the triangular lower 

matrix L for which
T

LLA   

A 





 



















10 1 2 1

1 15 2 3

2 2 13 4

1 3 4 12

. 

We determine particular components of the triangular lower matrix L which are 

different from zero: 

L A11 11 10 316228   . , 

L A
L21 21

11

1 1

10
0 32623   . , 

L A L22 22 12
2

2

15
1

10
386005   









  . , 
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L A
L31 31

11

1 2

10
0 63246   . , 

 L A L L
L32 32 31 21

22

1
2

2

10

1

10

1

14 9
0 46631   









 

.
. , 

 L A L L33 33 31
2

32
2

2 2

13
2

10

18

14 9
351888    









 





















 

.

.
. , 

L A
L41 41

11

1
0 31623   . , 

 L A L L
L42 42 41 21

22

1
0 75129    . , 

  L A L L L L
L43 43 41 31 42 32

33

1
129312    . , 

 L A L L L44 44 41
2

42
2

43
2 310860     . . 

 

L 

 



















316228 0 0 0

0 31623 386005 0 0

0 63246 0 46631 351888 0

0 31623 0 75129 129312 310860

.

. .

. . .

. . . .

 

Orthogonal matrices 

There is a group of matrices having the property: 

A A
 1 T  

which enormously simplifies solving a set of equations. We say that such 

matrices are orthogonal matrices. This property is shown by the transformation matrices 

for vectors: 

R 










c s

s c
,  

where cosc , sins , and  is a rotation angle. 

 We check the orthogonality of this matrix by the equation RR I T  : 

c s

s c

c s

s c

c s cs sc

sc cs c s









  









 

 

 









 











2 2

2 2

1 0

0 1
. 

We use this property of the transformation matrix in some chapters of this book. 
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Appendix 2. Methods of solving large sets of linear 

equations 

Sets of equations occurring in the finite element method are characterised by 

large, rare and positive-definite matrices. Methods of solving sets of equations of such a 

type of matrices differ slightly from the ways of solving any other sets and all 

mentioned above methods have to consider ways of storing of matrices in the computer 

memory. 

Methods of storage of stiffness matrices 

Not a very complex exercise on the use of the finite element method, for 

example a shell structure, generates a set of equations of the order of unknown 

parameters 1000÷10000. The square matrix of this set of equations becomes a banded 

symmetric matrix with suitable numbering degrees of freedom (there are very complex 

procedures of numbering of degrees of freedom using the graph theory). Hence only 

half of this band is enough to be memorised in order to make the reconstruction of the 

whole information written in the stiffness matrix of a structure possible. 

The simplest method of saving computer memory is recording the upper or 

lower matrix half bands in the rectangular table shown in Fig.A2.1. 

It changes the location of matrix elements in the table so that elements from the 

main diagonal are located in the first column of the band and, for example, the element 

which originally was in the row i and the column j is still in the same row but in the 

column k. The new value of a column index should be calculated on the basis of a 

simple relation: 

k = j-i+1 

before getting a necessary component. Thus, we have Bik=Aij for j  i. The half band 

width p for typical matrices is usually smaller by one order of value than the dimension 

n. Hence the lower triangle of the table B which is always ‘empty’, does not have any 

particular significance for saving the core memory. 
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Symmetric and square matrix A Banded matrix B 

            column j      column k  

                     

                     

                     

                     

row i             row i        

                     

                     

                     

                     

                     

 

 for the upper half band j  i 

Fig.A2.1 

 Another economical method is the sky-line method which depends on 

memorising only these parts of rows (or columns) of the upper or lower half band which 

lie between the main diagonal and the last non-zero elements of the table (Fig.A2.2). 

             

             

             

             

             

             

             

             

    Sym         

             

Fig.A2.2 

The memorising area is shaded in Fig.A2.2. 

Such a method of storing a matrix is possible thanks to the fact that non-zero 

elements of a triangular matrix never appear in areas lying behind the final non-zero 

p n 
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components in rows when the decomposition of the matrix takes place. It is very 

important because procedures which memorise the matrix L in the same table in which 

the stiffness matrix has been memorised are usually applied to the FEM algorithm. The 

irregular shapes of the area shown in Fig.A2.2 prevent arranging data in the form of a 

two-dimensional table. Thus, two one-dimensional tables (vectors) are applied to the 

sky-line method. One of them stores real numbers which are components of a matrix 

and the other one stores indexes of the first terms of the successive rows of the matrix 

(Fig.A2.3). 

 

 first row second row third row 

     c              

c                   

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  

                   

d 1 9 16 ..................             

 

Aij = Ck,  k = d[i]+j-i 

Fig.A2.3 

This method is widely applied though it requires fairly complex operations while 

building a matrix and solving a set of equations (continual calculation of indeces) 

because it ensures very effective exploitation of the computer memory. 

The Gauss elimination method  

The Gauss elimination method (in different variants) is one of the most often 

applied methods of solving sets of linear equations of the type Ax y  where the 

matrix A is quadratic and singular. 

We start solving it from the transformation of the first equation: 

x
A

y A xk k
k

n

1
11

1 1
2

1
 













  

and the insertion of so determined unknown into other equations. It causes the 

elimination of the first column in the equations 2 to n (Fig.A2.4). 
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  1  
A1

1
k  

 
A2

1
k     x1    y1/A11  

             

  0  
A

1     
 
x

1     
 
y

1   

             

             

Fig.A2.4. A set of linear equations after the first elimination. 

We repeat this operation for the matrix 
 

A
1  with dimensions (n-1)x(n-1) 

obtaining the matrix 
 

A
2 with dimensions (n-2)x(n-2), etc. We carry on transformations 

as long as we obtain an equation with one unknown parameter: 

   
A x ynn

n
n n

n 1 1 , 

from which we determine xn. 

We can say that the Gauss elimination depends on such transformation of a 

matrix of a set of linear equations which leads to building a set of equations with an 

upper triangular matrix: 

  yxUyxA
neliminatio Gauss the

, 

which we solve by applying the back substitution method described in Appendix 

1. The cost of the Gauss method is equal to n
3
/3 and can really be proved (comp. [2]) 

that a cheaper algorithm cannot be found. 

 While eliminating unknown parameters the division operation by the 

diagonal component of the matrix A continually appears in those transformations. It can 

happen that 
 

Aii
k will be equal to zero or close to zero even for a nonsingular matrix. It 

can prevent obtaining the solution or leads to serious numerical errors. Such a situation 

can be avoided by conducting the elimination process in a different order. The change in 

the choice order of unknown parameters for the elimination enables to find such a 

diagonal component which is the biggest one in the matrix 
 

A k and to minimise the 

number of numerical errors. 

 The variant of the Gauss elimination with the choice of a middle element 

is called the Gauss-Jordan method. It enables to obtain a solution with an insignificant 

error even for slightly conditioned sets of equations, that is for sets with the determinant 

of the matrix A close to zero. 



168 

 

Part of the source code (in the PASCAL language) solving sets of linear 

equations (the Gauss procedure) presented in the following section is an example of the 

realisation of the Gauss algorithm. 

The Gauss-Seidel iterative method 

The Gauss-Seidel iterative method is based on the assumption that the diagonal 

components of a matrix are considerably larger than components lying behind the 

diagonal. Thanks to it we can calculate 

x
A

y A xk k
k

n

1
11

1 1
2

1
 













 , 

with the initial assumption that xk = 0 for k = 2 ... n. We repeat this 

approximation for other unknown values: 

 x
A

y S Si
ii

i iL iR  
1

, 

where SiL is the sum of all products of terms lying on the left side of xi and 

suitable unknown values and SiR is the sum of products of terms lying the right side of xi 

and suitable unknown values: 

S A xiL ik k
k

i







1

1

, 

S A xiR ik k
k i

n


 


1

. 

Successive approximation of unknown values done by this method is concurrent 

when a set of equations is well conditioned, which means that terms lying on the 

diagonal are larger than components lying behind it. The stiffness matrices of the finite 

element method are built in such a way. The Seidel modification of this method depends 

on the consideration of current unknown values while the iteration m which signifies the 

sum SiL is calculated using unknown parameters during the iteration m, and the sum SiR 

is calculated on the basis of unknown values determined in the previous iteration (m-1): 

      x
A

y S Si
m

ii
i iL

m

iR

m
  

1 1
, 

where 
   

S A xiL
m

ik k
m

k

i







1

1

, 
   

S A xiR
m

ik k
m

k i

n
 

 

 1 1

1

, 
 

xk

m
 is the value of the 

unknown xk determined in the iteration m. 
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After every iterative step we calculate the difference 
     

i
m

i
m

i
mx x  1  which 

allows to check the concurrence of the process. Iterations can be broken when 

 Max i   , which means that the biggest difference is smaller than the permissible 

error of calculation. For large sets of equations we can often obtain the solution of a set 

of equations by the Gauss-Seidel method faster than by using the closed method (for 

example the Gauss-Jordan method). 

The Aitken overrelaxation method 

We note in the Gauss-Seidel iterative process that  

     
x xi

m
i
m

i
m 1  , 

where the unknown value approaches the exact value with the step 
 

 i
m . Aitken 

noted that velocity of the process can be increased (that is, the number of necessary 

iterations can be decreased) if we calculate 

     
x xi

m
i
m

i
m 1   , 

where  is a overrelaxation coefficient. The value of this coefficient should be 

fitted on the basis of numerical experiments and it should be contained within the range 

10 2 0. . . Our calculations show that for the static problem of a 3D truss the optimal 

value of the overrelaxation coefficient is equal to 1.26. 

Other methods of solving large sets of equations 

Sets of equations of the finite element method are very often solved by methods 

depending on matrix decomposition, for example, the Banachewicz-Cholesky method 

presented in Appendix 1. The cost of this method is proportional to n
3
/6 for the full 

symmetric matrix and it is equal to np
2
/6, where p is the half band width of the matrix 

for banded matrices used in FEM problems. 

Apart from the Banachewicz-Cholesky method some other methods of 

decomposition are also applied, for example, the Crout method consisting in splitting 

the matrix A  into three matrices: 

A LDL T , 

where D is the diagonal matrix which means that it contains non-zero components only 

on the main diagonal. Such a type of distribution is not as unique as the Banachewich-

Cholesky distribution, thus, the diagonal components of the matrix L are chosen so that 
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they are equal to 1. The Crout decomposition is often applied to solving FEM problems, 

and particularly in nonlinear problems where the stiffness matrix is not always positive-

definite. In this case the Banachewicz-Cholesky method leads to the formation of the 

matrix L with complex numbers. It results from the fact that diagonal terms are 

calculated there by extracting roots. In the Crout method we always obtain a matrix with 

real components [1], [2] . 

The Crout decomposition leads to the following relation: 

D A L Dii ii ik kk
k

i

 




   2

1

1

 

Dij  0  for j  i, 

Lij  0  for j > i, 

Lii 10. , 

L
D

A L L Dij

jj

ij ik jk kik

k

j

 















1

1

1

 for j < i, 

The cost of matrix decomposition by the Crout method is proportional to n
3
/6 for 

full matrices similarly to the cost of the process by the Banachewicz-Cholesky method. 

  



171 

 

Appendix 3. Stiffness of torsion frame elements 

The problem of torsion bars is very important in practice. The determination of 

the bar stiffness in the process of torsion is necessary to determine components of 

stiffness indices of 3D frame elements (comp. Chapter 5). The problem of 

determination of stress and stiffness  of a bar with a circular symmetric cross section 

(Fig.A3.1) was solved by Coulomb at the end of 18
th

 century [20]. 

 

 

Fig.A3.1 

A.  Circular cross section 

In case of circular cross sections their torsion stiffness is equal to the polar 

moment of inertia and: 

C J
R

o 
 4

2
 for a full circular cross section 

and 

 C J R Ro  


2 1
4

2
4  for a pipe cross section. 

Thus, the dependence between the torsion moment Ms and a unit angle of a cross 

section rotation is equal to 

Ms = CG. 

The problem of determination of stiffness and stress in a torsion bar with any 

cross section was solved by de Saint-Venant in the middle of 19
th

 century. He assumed 

that non-circular cross sections undergo deplanation. The determination of a warping 

function requires solving a harmonic differential equation: 

0
2

2

2

2


yx 






. 

Many ways of solving this problem for different cross sections can be found in 

the book written by P.S.Timoshenko and J.N.Goodier [20] and another one written by 
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M.T.Huber [8]. In this Appendix we give ready made solutions for a few different from 

the technical point of view cross sections. 

B.  An elliptic cross section 

This problem was solved by de Saint-Venant in 1855. 

22

33

ba

ba
C


  , 

where a and b are half axes of an ellipse. 

 

 

Fig.A3.2 

C.  An equilateral triangle 

This problem was solved by de Saint-Venant in 1855. 

 

 

Fig.A3.3 

C
a



4 3

45
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D. A rectangular cross section 

That problem was solved by de Saint-Venant in 1856. 

a

b
 1  

 

 

Fig.A3.4 

C k
a

b
a b











3 , 

where  k
a

b

a

b n

n b

an









  






1

3

64 1

25 5
1 3 5


tgh

, ,

 

Proper approximation can be obtained by using the formula of C.Weber [13,15]: 

a)  




























5

052.063.01
3

1

b

a

b

a

b

a
k , 

or its modification 

b)  k
a

b

a

b

a

b









   











1

3
0 21 1

12

4

4
. , 

giving the value which differs from the exact value not more than by 0.55% (at 

a

b
 0875. ). 
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Fig.A3.5 

The graph shows the dependence k
a

b









  which can be used for approximate 

determination of stiffness of a rectangular cross section (Fig.A3.5). 

 

E.  A circular segment 

This problem was solved by de Saint-Venant in 1878. 

 

Fig.A3.6 

  4RkC  , 

where  k  is the coefficient calculated on the basis of the equation: 
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We give the values of this coefficient for a few values of the angle  in the table 

below: 

 /4 /3 /2 2/3  3/2 5/3 2 

k 0.0181 0.0349 0.0825 0.148 0.296 0.572 0.672 0.878 

 

F.  An isosceles right-angled triangle 

The above problem was solved by Galerkin in 1919. 

 

Fig.A3.7 

C
a



4

38 3.
 

 

 

G. A regular hexagon 

 

Fig.A3.8 

J bo 
5 3

8
4  ; A b

3 3

2
2  ;  

C b 10366 4.  ; 

603.40
4


oCJ

A
  ; 2

max 564.0 b . 

H. A thin-walled pipe with any cross section 
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Fig.A3.9 

 

C
A

ds

g

o

S





4 2



, 

where Ao is the surface of a figure limited by a line dividing the thickness of a pipe wall 

into halves. Integration should be done along the circuit S of this figure. 

 

I. A thin-walled pipe cut along generating line 

 

Fig.A3.10 

C g ds
S

 
1

3

3
. 

It is interesting to notice that stiffness does not depend on the shape of a cross 

section but it depends on its thickness and circuit S. 
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J. Cross sections composed of thin-walled rectangles 

 

Fig.A3.11 

C g bi i
i

n





1

3

3

1

 

Comparing coefficient 
1

3
 in the above formula with the graph shown in 

Fig.A3.5, we note that stiffness is always overevaluated. For a cross section composed 

of rectangles with the same thickness more exact results are obtained by using the 

formula for rectangles (example D) where we substitute g for a and the length of a 

circuit of the middle line of a cross section is substituted for 

 b bi
i

n





1

. 

K. A thick-walled pipe cut along generating line 

 

Fig.A3.12 
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L. Other cross sections with crowned contour 
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 On the basis of many exact solutions de Saint-Venant proposed to 

determine the torsion stiffness from the approximate formula: 

C
A

Jo



4

24
, 

where A is the surface of a cross section and Jo is the center moment of inertia. 

The above formula is exact for an ellipse. Generalising it, we write 

oJ

A
C



4

 , 

where  is the coefficient depending on the shape of a cross section. The table 

below in which you can find several different values of the coefficient  can be helpful 

as a reference. 

Section 
Circle, 

ellipse 

Equilateral 

triangle 
Rectangle 

Circular 

segment 

Isosceles 

right- 

Regular 

hexagon 

   1:1 2:3 1:2 1:4 =/2 = angled 

triangle 

 

Example A, B C D D D D E E F G 

 4

= 

39.478 

45 42.674 42.438 41.976 40.221 42.022 40.935 43.088 40.603 
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