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Limit state condition and the dissipation function for isotropic
materials

J. PODGORSKI (LUBLIN)

THE PAPER presents the limit state condition containing three stress tensor invariants which may
be particularly useful in considering the behaviour of brittle and granular materials. The cor- -
responding power dissipation function is found. This makes it possible to obtain a dual descrip-
tion of the o — e relation. Particular forms of the dissipation function derived in the paper corres-
pond to the classical limit state conditions and simplify the estimation of the load carrying
capacity.

W pracy przedstawiono warunek stanu granicznego zalezny od trzech niezmiennikéw tensora
naprezenia, szczego6lnie przydatny do opisu zachowania materialéw kruchych i ofrodkéw
rozdrobnionych. Dla warunku tego znaleziono funkcje dysypacji mocy, co pozwolilo uzyskaé
dualnos¢ opisu zaleznosci 6 — €. Szczeg6lne postacie funkcji dysypacji odpowiadajace klasycznym
warunkom stanu granicznego, kt6ére podano w pracy, ulatwiaja oszacowania nosnosci
granicznej.

B paGore npeficTaBieHO yCIOBHE MPENEIBLHOTO COCTOSHAA, 3aBHCSIIEE OT TPEX MHBAPHAHTOB
TEH30Pa HATPKEHHUA, 0COGEHHO IIPUTOIHOE IS OMMCAHMA IOBENEHHS XPYOKHUX MATEpPHATIOB
H pasMesbYeHHBIX cpel. i aToro yeaoBua HalleHa QYHKIMA MUCCHIIAIME MOIIHOCTH, UTO
IIO3BOJIMJIO TIOJIYUMTH IYajIbHOCTh OIMCAHMSA 3aBHCHUMOCTH G—€. YUacrHble BuAbLI (GyHKIUMK
AUCCHIIAHE, OTBEUAIOINHME KJIACCHYECKUM YCIOBHAM IPEHNENBHOrO COCTOSHHA, KOTOphIe
IIpHBEAEHEI B paboTe, 00JICIYaOT OLEHKH IpeAeNIEHON Hecyleil criocobHOCTH.,

Nomenclature

G  stress tensor,
deviator of the tensor o,
€ strain rate tensor,
deviator of the tensor e,
oo denotes oy oy,
oo denotes gy 0y,
I,, I, I; invariants of the tensor o,

1
0p mean normal pressure ¢, = -S—Ix,

J2, J3 invariants of the tensor o’,

2
To octahedric shearing stress; 7o = l/—é_ Ja,

@ angle at the deviatoric plane in the space of stresses,
3V3 U,

J = cos3p invariant of the tensor ¢’; J = 2 T

-

II, IIT  invariants of the tensor €,
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Co . 2
octahedric distortion strain rate, v, = ‘l/—- I,

Yo 3
®e angle at the deviatoric plane in the space of strains,
Js = cos3@, invariant of the tensor €’; J; = 3V3 —H—I-,
2 1132
f =0 limit state condition, '
%, A parameters defining the shape of the section of the limit surface by the devia-
toric plane,
- P(J) shape function of the limit surface,
a, f parameters of the shape function P(J),
Co, C; parameters of the function f,

n normal to the limit surface in the deviatoric plane,
D power of dissipation,

W1, 42 Lagrangean multipliers,
a arbitrary constant from the interval <0, 1).

1. Introduction

THE FORMULATION of the limit state criterion for materials, the behaviour of which essen-
tially depends on the third stress tensor invariant and on the mean pressure, is still an
open problem.

The commonly used Coulomb-Mohr condition yields the results which differ from the
experimental data (for instance in the case of rocks, concrete etc.) by more than ten percent,
what is particularly evident in the range of positive mean normal stresses (at the vertex
of the limit surface). This is the reason why repeated attempts have been made to determine
the limit state more rigorously. Let us mention the papers by LADE and Duncan [1],
MaTsuokA [2], Gupenus [3] in which new criteria for sands are proposed, and also the
papers by MILLS, ZIMMERMAN [4], WiLLAM and WARNKE [5], OTTOSEN [6] where the
failure conditions for concrete are given. ‘ ~

In this paper a condition will be presented which embraces a very important class of
conical limit surfaces (a more general condition was formulated by the author in [7]).
This criterion contains the classical conditions by Huber-Mises, Tresca, Coulomb-Mohr,
Drucker-Prager and also the recently proposed LADE [1] and MATSUOKA [2] conditions;
the new criterion enables a more accurate »desc/ription of the material behaviour. The dissi-
pated power function was also determined for this criterion; this made it possible to rep-
resent the relations between the stresses and strain rates in two equivalent, dual forms.
Equations for the dissipated power functions correspond to the classical limit state con-
ditions and may be used to solve many practical problems, first of all the upper estimates
of the load carrying capacity.

The determination of the dissipated power function in the case of singular limit surfaces
(the Tresca and Coulomb-Mohr conditions) and all conical limit surfaces is not an easy
task due to nonunique relations between the stress and strain rate tensors. The difficulties
were surmounted by means of the limit transformations presented in Sect. 4 and the
Lagrange multipliers introduced in Sect. 5. . ‘
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2. Coordinate systems

In order to simplify the description of the limit surfaces and the dissipated power
surfaces, let us apply the cylindrical coordinate systems in the stress and strain rate spaces.

In the space of stresses the cylindrical coordinates (, 7, @), Fig. 1, are expressed in
terms of the stress tensor by the following formulae:

/3 _
h= 133 I1=l/30'0,
(2.1) r=v27, =37,
, 33 J
cos3p = J = ——'2/—— 372 .
0,.

FiG. 1.

| L 1
Here 1, = tro — first invariant of the stress tensor o, 6, = ?IL — mean normal stress,

' 1 . . ~ . , 2 .
J, = —&' + o’ —second invariant of the stress deviator @', 7o, = —J, — octahedric
T2 3

: . 1 o . .
shearing stress, J; = £ (6’c”) - 6’ — third invariant of the stress deviator o’, J — denotes

cos3g.
Analogous relations are assumed for the components /., ., ¢, in the space of strain
and the strain rate tensor invariants,

V3

he =—3‘3§k,
= yYAT =3,
cosdgp, = J, = _3__'./.3___111_

2 IIS/Z
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1

Here ¢ — first invariant of the strain rate tensor e Il = 5 €’ - € —the second invariant

of the strain rate deviator €/, y, = ]/—3—11 —octahedric distortion strain rate velocity,

1

III = 3 (e'e’)- € — the third invariant of the strain rate deviator €', J, — denotes cos 3p,.

3. Limit state condition

Comparison of the results of experimental investigations with the values predicted
by the limit state criteria shows the section of the limit surface made by the deviatoric
plane to constitute a very important element of the limit surface. In view of this fact,
several authors have proposed different functions to describe the shape of that section.
The functions, written in the form r = r(p), or r = P(J), will be called here the shape
functions. '

The simplest shape functions are

r=ro—J (MiLLS and ZIMMERMAN [4]),
and '
r? =ro—J (GUDEHUS 3D,

in which r, denotes a constant satisfying the convexity conditions:

ro > 10 for the Mills and Zimmerman functions,

ro = 4 for the Gudehus function.
Owing to these conditions, the ranges of applicability of the criteria are considerably
limited since for many materials (e.g. rocks, concrete, sand) it proves to be necessary to
apply the section shapes which are almost triangular.

Such a possibility is offered by the shape function proposed by WILLAM and WARNKE
[5] who used the equation of an ellipse

. 2(1 =A%) cosp+ (24 —1) y/ 4(1— %) cos’p+ 512 — 44

4(1—A%)cos2p+ (24—1)> ’
where 4 denotes a certain constant equal to the ratio of radii r at @ = 0°and ¢ = 60°,
r(0°)
(3.D) ‘ A= H60%)

angle @ varies within the interval —60°, 60°,
- LADE and DUNCAN [1], MATSUOKA [2] and OTTOSEN [6] use the function given by the
formula : ’

1

3

with the constant « satisfying the condition 0 < « < 1; this function describes the family
of curves contained between the circle (¢ = 0) and the triangle (« = 1).

cos (L arccos ocJ)
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Another classical condition of Coulomb-Mohr may be analyzed in this way by intro-
ducing the shape function

n

— cos(lp|—p)’

where f§ is a constant depending on the angle of internal friction (cf. Table 1), and ¢ satisfies
the condition 0° < |¢] < 60°.

Table 1.
Criteri Values of constants
riterion
Co - Cy a l B
HUBER-MISES 2 x
Ty k2 =0 J/?k 0 0 = P=1
TrESCA 5 -
[Tmaxl—k = 0 ]/ 3k 0 1 =
DRUCKER-PRAGER - Wan _ o "
— = b —,P=
VTo—a+bl; = 0 ]/3 @ Ve 0 g P=1
CouromB-MOHR V2 ccosd V2 sing oy arctg ( Ve l—sinqs)
|7al = c—tg o, V3 +sin%¢ V3+sin% 3+sins
LADE, DUNCAN 0 =27 =27 0
Ii—kllii = 0 2%1 2%1 :
1
MATSUOKA 1 1 +
LI 2 0 2 0
= 9(K*+1) 2|1+ 2
Ig 3K2 1_|_-____
3K?

In order to analyze the possibility of adaptation of these functions to the experimental
data, let us introduce, in addition to A, another characteristic parameter of the cross-
section, and namely the ratio of » at ¢ = 30° and at ¢ = 60°,

r(30°)

(3.2) = 7(-60—0)—.

The #— 4 relationships of the shape function and the experimental results concerning
concrete, sand and clay are shown in Fig. 2. Comparison of these relationships allows
one to draw the conclusion that none of the shape functions used so far enables us to
describe the behaviour of brittle and granular materials with sufficient accuracy.

~ Hence it is necessary to introduce a new function depending on both parameters in
order to obtain the 9 — A characteristics lying in the entire region bounded from below by
the Coulomb-Mohr condition, and from above — by the Lade curve (Fig. 2).
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The function satisfying the above conditions may be defined by the following equa-

tion:

(3.3)

y =

P’

1

P(J) = cos (% arccos oJ — ﬂ) ,

«, B being the constants satisfying the conditions 0 < « < 1, 0° < g < 30°. The para-
meters « and 8 may be determined on the basis of the known characteristics 4, ¢ by means
of Egs. (3.4). The equations are easily solved by the method of consecutive approximations

assuming the initial value

(.9

= 0°
o = cos3x,
tox — Acosf—cos(60°—p)
8% = in(60°— p)— Asinf ’
2Acosx— 39
8 = 5 27smx

The shape function in the form (3.3) may be used to construct the general form of the limit

state criterion

Ao(oo)+A4;(N)To+A42() 75 = 0,
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Here A, is a function of the mean pressure ¢, only, and 4,, A, are functions
of J. '
This general form of the criterion was used by the author to describe the phenomenon
of failure of concrete [7]; what leads to a very good agreement with experimental results.
In this paper considerations will be confined to such forms of the limit state condition
which lead to the conical limit surfaces:

(3.5 f=PJ)to~Co+Ci00 =0,

C, and C, being constants.

The criterion in the form (3.5) makes it possible to obtain several known limit state
conditions by assuming different values of the constants ¢, ff, C, and C;, what is shown
in Table 1. -

Let us now discuss the method of determination of the constants «, 8, C,, C; on the
basis of the experimental data given by GREEN and BisHOP [8] and concerning packed
sand. The results of the investigations taken from Fig. 3 of the paper [8] are presented

19

LADE, DUNCAN

-——
T e

proposed criterion

FiG. 3. -

in Table 2. Using these results and assuming zero cohesion (7, = 0 for g, = 0), the
characteristics & and A of the limit surface cross-section are determined from the for-
mulae

__3/sin¢c—1 _

~ 3/sing,+1°

9 = 220 (3sing. D),

7

Here ¢., ¢o, P: denote the respective internal friction angles at the three-axial compression
(p = 60°, J = —1), three-axial shear (¢ =30° J=0) and three-axial extension (p = 0°,
J=1). '

3 Arch. Mech, ‘Stos. nr 3/84
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The assumption of zero cohesion makes the constant Co in Eq. (3.5) vanish and so,
once both parameters « and f are found from the relations (3.4), there remains only one
constant C; to be determined from the equation

[rarscosag
cos | 5-arccos a—p

3/sin¢,+1

From Table 2 we obtain ¢, = 44°, ¢, = 39° and assume $o = 43.5° what yields the values
A = 0.7083, 9 = 0.7486, « = 0.9781, § = 10.28°, Co =0, C; = 0.5291.

The limit surface section corresponding to these parameters is shown in Fig. 3 (solid
ling), together with the projections of the experimental points obtained by Green and
Bishop [8] and the corresponding curve resulting from the Lade and Duncan condition
[1] for %, = 56 (dashed curve). Comparison of both conditions shows the possibility
of a better fitting of the condition proposed to the experimental data.

C, =2y2

4. Constitative relations of a perfectly plastic body

Assuming the associated flow law, the strain rate tensor may be written in the form

€ = i—@, where 4 > 0.
Jo

This equation may be transformed to another form, more convenient for further consider-
ations:

“.1) ' €= %skk 1+€, € = Jn,
where
no O _ AP
oo’ 7 A

In the case of the condition given by Eq. (3.5), the above relations may be represented
"in the form ‘

i = }»Cn

. cl , — O'" cl
4.2) : n=PpP 31, +P (y2 2 _J_r;)’
.Where‘

. (1
o oP 1 _sm(?arccosa.f——ﬂ)
ol 3 1 ’
— )
/=
¢’ = 0l = ¢’¢’ — 721.

Jo’

3*
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Finally, Eq. (4.1) assumes the form

@4.3) = z(-;— C11+n),

which for the different criteria listed in Table 1 remains unchanged (*), in contrast to the

formula determining the deviator n. : '
The relation between the deviator n and the tensor o for the classical limit state condi-

tions is shown in Table 3.

Table 3.
Ry e
€= Al—1+
T ( 3 “)
Criterion . . Deviator n
1
HuBER-MISES n= o’
’ 310
M o 1|} 00
Jz-’,él, n=n, nu=——_—0—10
V2 o ool

: M @ o 1 L0 0
TRESCA J=1,. n=an+(@—-an, ny=——\00 0
VZ oo -1
) ® & 1[0 0
J=—-1, n=an+(0-an, ny=——01 0
V2 oo -1

DRUCKER~ b

-PRAGER n= _370_6

2
J2#1, n=n ,
W ® ((1) @6 @ .
. CouLoMB-MOHR J=1, n=an+({—a)n n, n, n determined by Egs. (4.6), (4.7), (4.8)] -
3] 3)
J=—1, n=an+(—a)n

Let us now present the method of derivation of that rtelation in the most complex
case of the Coulomb—Mohr criterion. The corresponding limit surface is a pyramid, hence
its edges are located at J2 = 1; this accounts for the indefiniteness of the direction of n in
the deviatoric plane. By assuming J2 # 1, we may determine the deviator n for a side of
the Coulomb-Mohr pyramid. '

(*) This does not apply to the Lade and Matsuoka condition and other conditions in which the constant

-C, appearing in Eq. (3.5) equals zero since the assumption of the associated flow law yields the conclusion

of zero dissipation, and this contradicts the experiments. The contradiction may be avoided by assuming
the nonassociated flow law. However, this is not the subject of this paper. '
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Substitution of « =1 in Eq. (4.2), (cf. Table 1) yields

2
373

’ J A ot t
4.4 n = C95¥ [1:06 »(l—tgw—]'/—l—-}—z-—)+ V2o _]—/_lglz_]’

where

P = —%—arccos]—ﬂ = |p|—p.

From Eq. (4.4) it follows that mn is a normal to a side of the hexagon which represeﬁis
the section of the Coulomb-Mohr surface made by the deviatoric plane (Fig. 4).

Q

Fic. 4.

In order to verify this property, let us calculate, in accordance with Eq. (2.2);, the
value of cos3g, = J,.
For the deviator n we obtain

1, E’lz 2 n2 2
I = —2—1 n-n= ‘—6——[P +9(P)2(1—-J%)],
L. s .
4.5 Ml =—A°@n)'n = — [P3J+9P?P'(1-J?
@5 =3 R0 =T PTPPA-T)
—27P(P)2J(1 —J?)—-27(P)*(1-J3)].
e s . , siny .
On substituting; into these equations o =1, P =cosy, P' =3 3—'-/—1——]7 we obtain

from Eq. (2.2); J = cos3f what proves that n is normal to the side of the hexagon.
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Let us now analyze the deviator n given by Eq. (4.2), at the singular point J = 1.

In Eq. (4.2), we assume now P = cosff, P' = — ——S-Elé———. The following express-
/i
jons appear in Egs. (4.5):
| 1-J? 1—J?

and wy, = ——v-——
| - 1 2 ’
?——J ?—J

their limits at the point & = 1, J = 1 being equal to:

W1=

limw; =a, limw,=0 where 0<ax<1l

depending on the path at the plane o —J along which the point (¢ = 1,J = 1) is appfoa-
ched. A
Indefiniteness of the limit w, is the reason for the indefiniteness of the direction of n.
Equatlons (4.5) may now be wrltten in the following form:

II = —%—- (cos*B+asin?f),

73

= _*
27

5 (cos*f—3acosfBsin?p),

J= :—309s3ﬂ— ’52‘0055’ where o = J/6II .

By solving this equation for 1/ II we obtain the equation of a straight line in the octahedric
~ plane :

Vﬁ’—‘ | cosf __ cosf

cosQ,
cos 3 arccos J;

The equation remains valid within the interval |g,| < f, only, what means that the tip
_of the normal n moves along a straight line perpendicular to one of the principal direc-,
tions. :

The results obtained make it possible to write the normal n as a combination of the
¢Y) @
normals p and n of two sides of the Coulomb-Mohr hexagon (cf. Fig. 4):

¢S] :
n= an+(1 a)n where 0<a< 1.

o
The normals » and n are found from Eq. (4.4) by means of the substitutions

(¢}
n=n(p=p), v =arccoss—p,

) 1
n=n(y =y, ¢,=-arccos/+p




LIMIT STATE CONDITION AND THE DISSIPATION FUNCTION FOR ISOTROPIC MATERIALS 335

or

O] 2 . ®
4.6) - n=— nisi®si’

]/_
O]

where s; are the unit principal vectors of the tensor o, and the principal values »; are equal '

to

(1) 0 e ‘
ny =cosf, ny, = —cos(60°—p), nz = —cos(60°+p),

(4 7) @ 2 23 ()] ®
. n=——m- niS; X8y,
V3 =1

®@ @ ‘ @
ny =cosf, n, = —cos(60°+p), n3= —cos(60°—p).

At the second vertex of the Coulomb-Mohr hexagon (for J = —1) analogous transfor-

mations yield

@ 3
n =am+(1—a)n,

®
where n is normal to a side of the hexagon (Fig. 4),

3
3) 2 3 (3)
n = _:L_J nisi®Si,

(4.8) V3 £
() () @ '
ny = —cos(60°+p), n, =cosf, n,= —cos(60°—p).

Finally, the deviator e for the Coulomb-Mohr condition may be expressed by the for-
mulae

€ =7n, where J?# 1,
N ¢ Y (2)
€ = Alan+(1—a)n], where J=1,

. @ &)
€ = Alan+(1—a)n], where J= —1,

M@ )
where n, n, B, n are given by Eqs. (4.4), (4.6), (4.7) and (4.8).

5. Power of dissipation

The power dissipated in the process of deformation of a perfectly plastic body is de-
termined by the equation

D=oc-¢
Substitution of the relations (4.1) and (4.2) yields, in view of the condition (3.5), the = -
following result: .

D = Coj,,
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whence, on eliminating A by meanstof Eqgs. (4.1), and (4.5); — it follows
G.0) D = 3C II(J)y,.

Here I1(J;) is the shape function of the constant dissipation surface section by the devi-
atoric plane.

The form of the condition (3.5), which is confined to the conical limit surfaces only,
makes the constant dissipation surface a plane figure (or a plane curve if C; = 0) bounded
by a certain cone in the space of strain rates, -

(5.2) W= skk_3C1H(Je)yO = 0.

This boundedness results from the fact that the direction normal to a conical surface is
constant in the plane containing the vertex of the cone (Fig. 5).

t‘i v XO W=0
fr0 ¢ \\ 4
e, N[ __
€ €
g ./ KN@=D,
"% 3 6
FiG. 5.

The form of the dissipation equation (5.1) and conditions (5.2) is the same for all the
limit state criteria shown in Table 1; only the equations determining the shape functions
II(J,) must be different. Equations of the functions I1(J,) corresponding to the classxcal
criteria are given in Table 4.

In order to express the duality of descrlptlon of the o—e relation, let us write the
stress tensor in the form

_ oD

= e

Due to the limitations imposed on the tensor e(w = 0, Eq. (5.2)), the relation must be
written in a different form."

: oD ow
(5.3) C = g +M—a—€-,
with g denoting the Lagrange multiplier.
This equation allows for the determination of the stress deviator only, since in view
of the form of the constant dissipation surface the mean pressure o, may be assumed with

a certain degree of arbitrariness, (6, < Co/C,). Itis easily verified thatitis the mean press-




Table 4.

D =3CT(J) Yo ) W= €4~ 3CT1(])Yo=0
)]
[J)
2}
=
-
@
e
2
T
o
(&)
n
Q
[
—
-
]
(@)}
o
[ 3
o
!
—
Q
X
ol
."?_)
o
c
O
ZI.
€ -5t
cos €
S cos 3[5\<L\<1 s ,71= cos p
8
_ cos|Pe-60°)
& f=ltyl~-c+tgg g, |-1¢TScos3p 1= cos{60°- )

[337)
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ure which plays the role of a Lagrange multiplier in Eq. (5.3), and this makes it possible
- to write the equation in another form:

(5.4) : g = 0'01+3(C0—C100)N.

Here N  2UZ@y0]
Jde
in the deviatoric plane. _
For an arbitrary bounding surface w = 0, Eq. (5.2), the tensor N is expressed by the
formula

is the normal to the curve bounding the constant dissipation surface

(55) N = 75%‘ +3U’ (]/E €2 _Jsi)>
0o

0 yO

where I’ = %171—, and € = €'e’—y,1, like the normal n (cf. Eq. (4.2)). In Table 5 the

equations are also given, determining the normal N for all the classical limit = states cri-
teria. -

Let us now determine the deviator N in the case of the Coulomb-Mohr criterion.

Table 5.
G = O‘ol+3(C¢j—C10'Q)N
I Criterion : Deviator N
HuBer-Mises - N= -4
' 370
. O 72 0
0</Z<1l, N=N, Ny= 3 0 -1 0
0 0 -1
TRESCA ?2) ) _i'“ 10 0
’ —1<.r;;<0, N=N, Nu= — 01 0
‘ 300 -2
' ) @
Jf=0, N=aN+(l—-a)N
- 1
DRUCKER- Ne e
-PRAGER 3vo
W oo . 1 [ 0 0
cos3f < J:< 1, N=N, Njy=-— 0 —-1 0
V2eosplo o -1
) 10 0
) 2
CouLome-Morr ~1<Je<cos3, N=N, N, = 01 0
e Tt
V2 cos (m—ﬂ) 00 -2
3 .
- : (O] 2)
J&'=cos3f, N =aN+(1—-a)N
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The shape function of the constant dissipaﬁon surface is in this case given by the equations
(cf. Table 4)

Uy =10, = ‘;%SS"; for cos3f<J, <1

and

cos(p,—60°)
cos(60°—p)
The analogy of the formulae (5.5) and (4.2), may be used to write, on the basis of Eq.
(4.5), the equations

N-N = 3 [IT*+9(IT")*(1-J3),
(56) (NN = {90 (1~~~ =210 ~J2Y],

) =11, = for  (—1) < J, < cos3p.

and
J == —'—3—._.- ______.—-(NN) i N 0
22 (N-N)*2
Substituting here IT = II, and II = I, we obtain ‘
W Iy ©Q© [3 O
N——a—GI_-’ N'N—W’ J(N)"“ s
and ‘ ‘
@ Ay, @@ 3] @) -
N = 2-—0—- . = —— N = "‘1,
o€’ N cos2(60°—p)’ I

: o) @ .
what demonstrates that N and N are normal to the hexagon of constant dissipation,

Fig. 6. |
b 1°
KJJ)o
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e @ : '
The normals N and N may also be written by means of the following formulae:

1) V2 {—. )

5.7 N = cosB iA_f Nie;®e;,

o ) ) [0)
where e; are the unit principal vectors of the tensor €, and N, = 1, Ny = —1/2, N5 =
= —1/2,

@ V2 S @
2
o = i A Nie;®e;,
5.5) cos(60°— pB) e |
@ 1 @ 1 )
N, =5 Nz=—2—, N; = —1.

A separate treatment is needed to determine the deviator N at the point of intersection
of the surfaces I7, and IT,, that is at the vertex of the constant dissipation cone. Here the
five components of the deviator €’ must satisfy the additional condition J: = cos3p.

This condition may be treated as a constraint imposed on the tensor €', and so the
condition (5.4), is rewritten as '

_ 0T, y0) ok(J,)
N="%™ "M

(5.9 . 0L, y0) | - k(J.)
S N= o€’ tia o€’

Here k(J;) = J,—cos3f = 01is the equation of constraints, and w1 and u, are the Lagrange
multipliers. The ,,—¢¢ sign in the first equation results from the direction of the normal to
the plane k(J,) = 0 (Fig. 6).

Denoting 0k/0e’ = M, Eqgs. (5.9) are written in a form more convenient for further
considerations, A

€3}

N = N-u;M,
(5.10) or ‘
@ 1 o @
N = N+,U2M from M = m (N—N)
This equation is easily verified to be true in view of the equality
';e_f [yolITy—I1)] = (u, +;“2)§_:kT,

which results from the fact that k(J,) = 0 is the solution of the set of equations
Dy = 3CoII,(J) o,
.Do = 3C0U2(JB)YO,

valid for arbitrary D,. These equations express the condition of equal dissipation at both
segments of the curve and at the vertex of the constant dissipation curve.
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Equations (5.10) may be written in the form

TEOINC)
—"‘[N'I‘N'l‘(ﬂz p)M],

or
) ) K2
N = aN+(1—-a)N, where a=-—"7"",
Mg+ o
0<ax<l.

Consequently, the stress tensor in the case of the Coulomb-Mohr condition is ‘expressed
by the formula '

g = 0'01+3(C0—“C10'0)N,

where
1)
IN, when cos3f<J/,<1,
2
N =N, when —1<J,<cos3,
Sl W @
aN+(1—a)N, when J, = cos3p,

1) 2
deviators N and N being determined by Egs. (5 7) and (5.8).

6. Conclusions

In the present paper the limit state condition for isotropic materials has been derived;
the condition is applicable to a very important (from the practical point of view) class
of conical limit conditions. ‘

This criterion contains the classical limit state conditions introduced by Huber-Mises,
Tresca, Coulomb-Mohr, Drucker—Prager, and also the recently proposed LApe [1] and
MATSUOKA [2] conditions; it enables a more accurate description of the material behaviour,
as it was illustrated by the example

The analytic form of the criterion enabled a simple derivation of the function of power
dissipation associated with the limit state conditions which correspond to both the smooth
and the singular limit surfaces. The function used as the stress tensor potential “allows
for the dual description of the ¢ —e relation.

The dissipation potentials given in the paper may be applied to all classical crlterla
this should simplify the procedure of solving numsrous practically important problems
of the load carrying capacity and, in particular, the evaluation of the upper estimates
by means by the kinematically admissible velocity fields. «

Within the class of the conditions considered, the strain rate tensor components are
not independent. The existence of certain relations holding between the individual com-
ponents (due to the singular limit surfaces) was treated in the paper as the additional set
of constraints imposed on the tensor €; this, in turn, made it possible to apply (after
fromulation of the constraint equations) the Lagrange multipliers technique.
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