MIT 18.085, Computational Science and Engineering I, Fall 2008
prof. Gilbert Strang


  • Lecture 01: Four special matrices
  • Lecture 02: Difference equations
  • Lecture 03: Solving a linear system
  • Lecture 04: Delta function day!
  • Lecture 05: Eigenvalues (part 1)
  • Lecture 06: Eigenvalues (part 2); positive definite (part 1)
  • Lecture 07: Positive definite day!
  • Lecture 08: Springs and masses; the main framework
  • Lecture 09: Oscillation
  • Lecture 10: Finite differences in time; least squares (part 1)
  • Lecture 11: Least squares (part 2)
  • Lecture 12: Graphs and networks
  • Lecture 13: Kirchhoff's Current Law
  • Lecture 14: Exam Review
  • Lecture 15: Trusses and A sup T CA
  • Lecture 16: Trusses (part 2)
  • Lecture 17: Finite elements in 1D (part 1)
  • Lecture 18: Finite elements in 1D (part 2)
  • Lecture 19: Quadratic/cubic elements
  • Lecture 20: Element matrices; 4th order bending equations
  • Lecture 21: Boundary conditions, splines, gradient and divergence (part 1)
  • Lecture 22: Gradient and divergence (part 2)
  • Lecture 23: Laplace's equation (part 1)
  • Lecture 24: Laplace's equation (part 2)
  • Lecture 25: Fast Poisson solver (part 1)
  • Lecture 26: Fast Poisson solver (part 2); finite elements in 2D (part 1)
  • Lecture 27: Finite elements in 2D (part 2)
  • Lecture 28: Fourier series (part 1)
  • Lecture 29: Fourier series (part 2)
  • Lecture 30: Discrete Fourier series
  • Lecture 31: Examples of discrete Fourier transform; fast Fourier transform; convolution (part 1)
  • Lecture 32: Convolution (part 2); filtering
  • Lecture 33: Filters; Fourier integral transform (part 1)
  • Lecture 34: Fourier integral transform (part 2)
  • Lecture 35: Convolution equations: deconvolution; convolution in 2D
  • Lecture 36: Sampling Theorem